ISBN
978-0-642-33270-7 [PDF]
978-0-642-33271-4 [DOCX]

With the exception of the Commonwealth Coat of Arms, the Department’s logo, any material protected by a trade mark and where otherwise noted all material presented in this document is provided under a Creative Commons Attribution 3.0 Australia (http://creativecommons.org/licenses/by/3.0/au/) licence.

The details of the relevant licence conditions are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 3.0 AU licence (http://creativecommons.org/licenses/by/3.0/au/legalcode).

The document must be attributed as the (Office of the Federal Safety Commissioner Audit Criteria Evidence Guide).
Message from the Federal Safety Commissioner

Government and industry alike agree that more needs to be done to improve OHS performance in the Australian building and construction industry.

While we can acknowledge that there have been positive steps forward in the industry with many companies investing in safety, showing great leadership and establishing a strong safety culture, I am sure you will agree that tragic accidents are still happening far too frequently in the building and construction industry. If we are to prevent injuries and the loss of lives on building sites we need to achieve a real and sustainable improvement in safety – and this is where cultural change becomes important.

A significant tool at the disposal of my office in effecting this cultural change is the Australian Government Building and Construction OHS Accreditation Scheme. The basic premise of the Scheme is that anyone wanting to contract for federal government funded work above specified financial thresholds must first meet certain OHS standards. These standards set a very high benchmark.

Over 250 companies have been able to achieve accreditation by demonstrating compliance against the OFSC audit criteria. Many of these companies have told me that they have seen an improvement in their own safety, productivity, culture and bottom line that far outweigh the time and resources required to achieve accreditation.

Many companies have also provided feedback that their task of meeting the requirements of the audit criteria would be greatly assisted by advice from my office that provides a greater understanding of each criterion. The following Audit Criteria Evidence Guide provides detailed information against each criterion: its scope, examples of relevant documentation and what will demonstrate evidence of implementation. The Evidence Guide also provides sector specific examples, for instance, residential building sector versus the commercial and civil sectors.

The Audit Criteria Evidence Guide has been developed in consultation with company representatives, industry stakeholders and Federal Safety Officers. I thank them for their input.

I take this opportunity to encourage your feedback on your experience of using the guide. If you would like to provide feedback on the Audit Criteria Evidence Guide or would like further assistance in preparing for audits, please email ofsc@deewr.gov.au or phone the assist line on 1800 652 500. Further information and fact sheets on the Scheme can be found at www.fsc.gov.au

Jeff Willing

Federal Safety Commissioner

June 2011
Message from the Federal Safety Commissioner

1.1 Using the Audit Criteria Evidence Guide

Explanation of descriptors

1.2 OHSMS Compliance

- **OH3 Legal Requirement**
- **OH12 Hazard Identification Risk Assessment and Control**
- **OH13 Emergency Preparedness and Response**
- **OH14 Health Surveillance and Exposure Monitoring**
- **OH15 Incident Investigation and Corrective Action**
- **OH17 Health & Safety Management System Audit**

1.3 Scheme Criteria Compliance

- **SC1 Senior Management Commitment**
- **SC2 Integration of Design Issues into the Risk Management Process**
- **SC3 Whole of Project Consultation**
- **SC4 Management of Subcontractor OHS**
- **SC5 Project Performance Measurement**
- **SC6 Training Arrangements**

1.4 OFSC targeted hazards

- **H1 Working at Heights**
- **H2 Telecommunication Towers**
- **H3 Demolition**
- **H4 Asbestos**
- **H5 Structural Alterations/Temporary Support Structures**
- **H6 Confined Space**
- **H7 Excavation**
- **H8 Tunnels**
- **H9 Explosives**
- **H10 Pressurised Gas**
- **H11 Chemical, Fuel or Refrigerant Lines**
- **H12 Electrical**
- **H13 Contaminated / Flammable Atmosphere**
- **H14 Tilt-up / Precast Concrete**
- **H15 Traffic**
- **H16 Mobile Plant**
- **H17 Artificial Extremes of Temperature**
- **H18 Diving**
- **H19 Construction Work In, Over or Adjacent to Water/Liquids Where Risk of Drowning**
1.1 Using the Audit Criteria Evidence Guide

The Audit Criteria Evidence Guide has been prepared to assist companies in their preparation for an audit to be conducted by the Office of the Federal Safety Commissioner (OFSC). Audits are arranged in consultation with companies and companies are asked to confirm that their OHSMS is in place on an identified project site and that they are undertaking building work on that site.

Decisions on what audit criteria are to be verified at an on-site audit will be made by the OFSC in the first instance and will be determined by a number of factors including works underway on the project site and prior on-site audit results.

The following information can be used by companies to assist in assessing whether their documentation addresses the OFSC Audit criteria.

<table>
<thead>
<tr>
<th>Explanation of descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
</tr>
<tr>
<td>Example</td>
</tr>
</tbody>
</table>

The Audit Criteria Evidence Guide provides additional information by sector, where applicable, for the civil works sector, the building (commercial and multistorey) sector and the residential housing sector.

The documents, procedures and processes described below are provided as guidance for companies. The list is neither prescriptive nor exhaustive. Companies do not need to have everything on the list in place, and may also have other means by which the criteria can be adequately addressed.

The documented process/procedure needs to effectively communicate the organisation’s requirements to ensure all personnel share a common understanding of the process and method of achieving the desired outcome. A documented process can be written in any format and may spell out or address issues such as

- the purpose;
- what should be done, and by whom;
- when and how it is done;
- what tools, materials, and documents are needed; and,
- how the activity is controlled and recorded.
1.2 OHSMS Compliance

Decisions on what OHSMS criteria is to be verified at an on-site audit will be made by the Office of the Federal Safety Commissioner (OFSC) in the first instance and will be determined by a number of factors including works underway on the project site and prior on-site audit results. The emphasis is for companies to identify hazards, assess risks to health and safety, and develop and implement control measures which use the ‘hierarchy of control’ method to eliminate hazards from the workplace or isolate people from the hazard. Where this is not possible, work activities should be planned and controlled through company processes to the extent necessary to prevent injury and illness.

<table>
<thead>
<tr>
<th>OH3 Legal Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH3.1</td>
</tr>
</tbody>
</table>

NB
- A subscription service on its own will not satisfy this criterion.

Example
- Documented process/procedure (or similar document) outlining how the organisation will identify OHS legislation, standards, codes and other requirements relevant to the organisation and each specific project
- OHS Legal and other requirements register
- OHS plan and Job Safety Analysis (JSA)/Safe Work Method Statements (SWMS) (with relevant legislation applicable to the scope of works, identified/listed/summarised within).
- Project OHS risk assessment record incorporates identified OHS legislation, standards, codes and other requirements.
- Identified legislation, standards, codes and other requirements are relevant to the jurisdiction and project risks

| **OH3.2** | There is a documented process to ensure all workers on site are advised of, and have ready access to, current Health and Safety Acts, Regulations, Australian Standards, Codes of Practice and other documentation relevant to health and safety. |

NB
- On smaller projects, ready access may not include access on-site. Access to documents held at head office or on a company intranet by way of laptop are options deemed acceptable, provided workers are aware of how and where to access this information.

Example
- Documented process/procedure (or similar document) outlining how the organisation will ensure workers receive communication and have access to identified OHS legislation, standards, codes and other requirements relevant to the project.
- Records are available to demonstrate that workers have been advised of relevant project OHS legislative requirements and/or how to access relevant legislation etc.
- Toolbox/site meeting records.
<table>
<thead>
<tr>
<th>OH3.3</th>
<th>There is a documented process to ensure all procedures, work instructions, JSAs/SWMS and work practices reflect the requirements of current legislation, standards, and other requirements relevant to health and safety.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>This criterion does not specifically require a company to reference the title or section of applicable safety legislation etc in the control measures. The emphasis is on ensuring that control measures reflect the requirements of applicable health and safety legislative provisions.</td>
</tr>
</tbody>
</table>
| **Example** | Company internal approval processes for procedures, work instructions and other OHS documents ensure the documents reflect the requirements of current legislation, standards, and other requirements relevant to health and safety.
A process is available to review each SWMS using criteria that includes a review to ensure the SWMS reflects the requirements of current legislation prior to commencing work relevant to the SWMS.
All reviews have been undertaken for all subcontractor activities prior to the commencement of work.
Relevant minimum requirements set out in jurisdictional legislation and standards are included in the controls within JSAs/SWMS.
The OHS plan, JSAs/SWMS and relevant safety documentation references/meets the minimum compliance requirements of relevant legislation associated with the tasks being carried out.
OHS plan, project OHS risk assessment and JSAs/SWMS contain, and are compliant with, relevant legislation, standards, and other requirements. |

<table>
<thead>
<tr>
<th>OH3.4</th>
<th>There is a documented process to ensure Health and Safety Acts, Regulations, Australian Standards, Codes of Practice and other requirements relevant to health and safety are monitored for change.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>A subscription service on its own that merely notifies the organisation of changes is not sufficient to fully address this criterion.</td>
</tr>
</tbody>
</table>
| **Example** | Documented process/procedure (or similar document) outlining how the organisation will regularly monitor for and review changes in identified OHS legislation, standards, codes and other OHS requirements relevant to the organisation and project.
A register of identified changes in relevant OHS legislation, standards, codes and other requirements is maintained.
The identified Health and Safety Acts, Regulations, Australian Standards, Codes of Practice and other requirements detailed for criterion OH3.1 have been updated and reflect recent amendments.
Position/role description for manager responsible for the monitoring of legislation for change.
Registration to legislation-based and recognised standards and codes update and alert services.
Internal processes are established to ensure changes are disseminated. |

| **OH3.5** | There is a documented process to ensure changes to Health and Safety Acts, Regulations, Australian Standards, Codes of Practice and other requirements relevant to health and safety generate a review of the company's procedures. |
OH12 Hazard Identification Risk Assessment and Control

OH12.1
There is a documented process to ensure that hazard identification, risk assessment and risk control (HIRAC) processes are conducted and documented.

Example
- Documented process/procedure (or similar document) outlines the methodology for the organisation to adopt when performing HIRAC.
- Documented process/procedure (or similar document) outlines when HIRAC is undertaken, specific tools used and nature of the records kept.
- HIRAC is performed consistent with jurisdictional legal and other requirements.
- Risk controls comply with or exceed minimum requirements contained within legislation, standards and codes of practice.

OH12.2
There is a documented process to ensure the project hazard identification, risk assessment and risk control (HIRAC) process is undertaken by personnel competent in the use of the company’s HIRAC methodology.

Example
- Documented process/procedure (or similar document) identifies and outlines the minimum competency requirements of persons performing, facilitating and reviewing the HIRAC processes of the organisation and project.
- Evidence of formal training in the organisation’s HIRAC methodology by persons performing, facilitating and reviewing the HIRAC processes of the organisation and project.
- Skills/training/competency register.
- Position/role description.
- There is evidence available to demonstrate that JSAs/SWMS are signed off by a competent person.
<table>
<thead>
<tr>
<th>OH12.3</th>
<th>There is a documented process to ensure project specific hazards, including public safety hazards, associated with the company’s operations, products or services are identified, risk assessed, and controlled.</th>
</tr>
</thead>
</table>
| **NB** | ● Project specific hazards could include, but are not limited to:
 o violence, harassment and workplace stress;
 o hazardous substances and dangerous goods;
 o traffic and vehicles
 o manual handling;
 o plant;
 o electricity;
 o the work environment;
 o working at heights;
 o falling objects;
 o noise;
 o fatigue; and
 o biological hazards. |
| **Example** | ● Documented process/procedure (or similar document) outlines the requirement to perform project-level HIRAC.
 ● A project risk assessment has been undertaken, documented and considers all activities and operations relevant to the project.
 ● The project OHS risk assessment record shall be project specific (not generic).
 ● Processes/procedures have been developed to facilitate and ensure the implementation of controls specified within the project risk assessment. |
| **SECTOR SPECIFIC COMMENTS - Building (residential housing) sector** | *The scope of the project OHS risk assessment may incorporate a number of residential sites provided similar construction methodology and specification exists. Unique site-specific OHS hazards on individual sites shall be identified and stated as such within the project OHS risk assessment.* |
| **OH12.4** | There is a documented process to ensure that HIRAC is incorporated into procurement. |
| **Example** | ● Documented process/procedure (or similar document) outlines the requirement to perform HIRAC prior to procurement.
 ● Plant risk assessments.
 ● Records of procurement/purchasing risk assessments.
 ● Procurement process considers contractors and labour hire, assesses risk and corresponding risk controls.
 ● Material Safety Data Sheet (MSDS) reviews prior to procurement of chemicals and corresponding risk assessment. |
| **OH12.5** | Where the company is required to provide its services within or near a client’s or other entity’s workplace, there is a documented process to liaise with the client/other entity and implement a HIRAC process for hazards impacting on the client/other entity and project. |
| **Example** | ● Documented process/procedure (or similar document) that outlines the requirement to perform HIRAC in relation to hazards associated with working |
within or near the client/other entity’s workplace.

- Client meetings or other forms of liaison with stakeholders (persons in control of the other existing workplace) are undertaken to identify and manage both hazards from the other existing workplace that could impact on the project and vice versa.
- Emergency response planning considers interface between the other existing workplace emergency risks and response impact on construction project and vice versa.
- Evidence of an appropriate hazard/risk assessment carried out and where necessary mutual arrangements in place for respective controls.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector

In most cases this will not apply to new residential construction projects.

| **OH12.6** | There is a documented process to ensure risks of identified hazards are assessed having regard to:
| | • the likelihood and consequence of injury, illness or incident occurring; and
| | • available information on the hazard including any records of incidents, illness and disease. |

Example

- The documented HIRAC process/procedure requires consequence and likelihood to be considered when determining risk.
- Risk assessments demonstrate consequence and likelihood, which has been determined prior to obtaining risk level for each hazard.
- Supporting information such as industry, organisational and project incident reports, hazard information, drawings, inspection and audit reports, other industry information, bulletins and alerts, change notices etc can be demonstrated to have been considered in the HIRAC processes.
- Hazards are assigned the relevant level of risk in accordance with the identified information.
- Records of risk workshops are retained and demonstrate available information considered in the risk assessment.

| **OH12.7** | There is a documented process to ensure identified hazards are assigned risk control priorities, having regard to the identified levels of risk. |

NB

- Risk level should impact and lead to the extent and nature of controls implemented, i.e. the greater the assessed risk, the greater the effort and level of control required. Documented HIRAC processes/procedures should lead to this as an integral element of the process.
- Risk assessments that only identify risk level and/or a risk score and fail to provide any real relevance to the risk score in the control(s) selected will not fully achieve this criterion.

Example

- Documented process/procedure (or similar document) outlines methodology for evaluating assessed risk level and establishing control priorities based upon risk.
- Documented HIRAC processes/procedures give relevance to risk level in determining control measures/priorities, as well as management of work processes.
- Risk assessments such as the project risk assessment and supporting
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
</table>
| JSAs/SWMS | Adequately rank identified hazards and risks which are addressed giving due regard to the risk level.
| | - The risk register ranks the level of risk for each identified hazard.
| | - There are defined criteria for addressing hazards in accordance with the identified level of risk.
| | - Risk evaluation criteria exist and management actions based on risk level are defined. |
| **OH12.8** | There is a documented process to ensure appropriate control measures are established for all identified hazards, in accordance with the ‘hierarchy of control’. |
| **NB** | - Residual risk is not in the scope of this criterion as it is captured in OH12.9.
| | - This is the difference between merely coming up with a control/solution and that of one which is ‘appropriate’ within the context of the level of risk and in accordance with the hierarchy of control. Controls that reflect normal industry custom and practice may not suffice in all instances.
| | - Controls determined by HIRAC processes need to be as high up the order (hierarchy of control) as is practicable and commensurate with the level of risk. Procedural controls or Personal Protective Equipment (PPE) on their own are the least preferred and are less likely to be acceptable where engineering controls, substitution or elimination are possible – particularly where a high risk level is involved. Therefore, project Risk Assessments/JSAs/SWMS, plant risk assessments and other risk assessments need to be evaluated with this in mind and the controls contained within, assessed against the requirement of this criterion.
| | - Documented HIRAC processes/procedures must address the hierarchy of control in determining appropriate controls.
| | - Requirements of Australian Standards, Codes and other recognised standards often contain higher order (within the hierarchy of control) controls that are a suitable and appropriate means of controlling hazards. |
| **Example**| Documented process/procedure (or similar document) that outlines the methodology and constraints for selecting hazard controls and in particular requires consideration and application of the hierarchy of control.
| | - OHS plan, project risk register and JSAs/SWMS actively implement the hierarchy of control methodology. This includes in order of priority:
| | - elimination;
| | - substitution;
| | - engineering;
| | - administrative; and
| | - personal protective equipment.
| | - OHS plan adequately assigns control considering the hierarchy of control. |
| **OH12.9** | There is a documented process to ensure the hazard identification, risk assessment and risk control process is subject to an evaluation of the effectiveness of the process. |
| **NB** | - Residual risk is not specifically defined as a requirement of this criterion, or of the HIRAC process, however it can assist in determining if adequate and appropriate control measures have been determined within the HIRAC process. |
| Example | Documented process/procedure (or similar document) that outlines the method for evaluating the effectiveness of both the overall company HIRAC process and the outputs associated with each stage of the HIRAC process. |
| - | Evidence of reviews addressing the effectiveness of the risk assessments completed including, for JSAs/SWMS, project risk assessment and where relevant any specialised risk assessment. |
| - | Corrective action process including process for validating risk controls. |
| - | Records of reviews are maintained. |

OH13 Emergency Preparedness and Response

OH13.1 There is a documented process to ensure potential emergency situations have been identified and site-specific emergency procedures/plans are documented and regularly reviewed.

Example

- Documented process/procedure (or similar document) that outlines the methodology for identifying all relevant potential emergency situations in the context of project specific risks.
- Evidence that the project risk assessment considered and addresses risks that could result in an emergency.
- Development of a site-specific emergency plan based upon the outcomes of the project risk assessment.
- Processes for ensuring regular review as circumstances change.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector

For typical projects where similar emergency risks and circumstances apply, generic emergency arrangements and plans may suffice.

OH13.2 There is a documented process to ensure emergency response arrangements are communicated to all personnel and visitors.

Example

- Documented process/procedure (or similar document) that outlines the methodology for ensuring relevant emergency response plan content is communicated to both workers, visitors, and a client’s site workers (where applicable).
- Site induction includes the emergency procedures/plans applicable to relevant personnel and visitors.
- Emergency response arrangements are displayed on-site.
- Emergency response arrangements are communicated at toolbox meetings.
- Emergency response arrangements are contained within the project OHS plan.
- Emergency contact personnel are identified (e.g. notice boards or by different coloured helmet etc).
- Workers are aware of the nearest evacuation point and where to go to in the event of an emergency.

OH13.3 There is a documented process to ensure emergency drills are planned, carried out on site, their effectiveness evaluated and corrective actions taken where necessary.
Documented process/procedure (or similar document) that outlines the methodology for planning and performing emergency scenario drills on the project, evaluating the effectiveness of a drill and establishing corrective actions to address any deficiencies.

- Emergency debrief and drill evaluation record.
- Emergency drill plan/schedule.
- Emergency drills are performed for emergency scenarios identified and frequency scheduled based on risk.
- Corrective action records.
- Record of practice drills for emergency situations.
- Emergency drills have been conducted in accordance with the emergency plan and/or drill schedule.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector
The aim for smaller sites would not necessarily be to conduct drills, but rather to ensure emergency processes as planned by the Principal Contractor have been verified as being established and to ensure consideration is given to assumptions regarding equipment being available on site etc.

Example

There is a documented process/procedure (or similar document) that identifies emergency personnel designated to the project and specifies the training requirements necessary to perform the allocated emergency responsibilities.

- There are records that demonstrate designated emergency personnel have received training in performing their emergency responsibilities as identified.
- Training is relevant to the site-specific emergency response plans/protocols on the project.
- There are records of sufficient training for all relevant emergency response personnel (e.g. fire wardens or emergency controller, first aid officers).
- Training/skills register and/or copies of certificates.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector
For domestic projects the training is likely to involve site supervisors to ensure they are trained in and understand the procedures to be adopted and how to manage/assist in the coordination of emergencies in situations where they may be remote from the project.

Example

There is a documented process/procedure (or similar document) that identifies emergency personnel designated to the project and specifies the training requirements necessary to perform the allocated emergency responsibilities.

- There are records that demonstrate designated emergency personnel have received training in performing their emergency responsibilities as identified.
- Training is relevant to the site-specific emergency response plans/protocols on the project.
- There are records of sufficient training for all relevant emergency response personnel (e.g. fire wardens or emergency controller, first aid officers).
- Training/skills register and/or copies of certificates.
emergency equipment needed on-site with involvement of a suitably competent person shown (i.e. fire brigade, emergency consultant, safety practitioner, relevantly qualified employee).

- Documented evidence of an emergency equipment review.
- Inspection reports and audit reports.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector
The assessment by a suitably competent person of emergency equipment and procedures to be adopted for a residential housing project may be suitable for similar designs and like projects. That is a separate assessment for each house may not be necessary if they have the same risk profile.

OH13.6 There is a documented process to ensure emergency equipment, exit signs, paths of travel and alarm systems are inspected, tested and maintained at regular intervals.

Example
- There is a documented process/procedure (or similar document) that outlines a program that ensures relevant emergency equipment etc as identified for the project is inspected, tested and maintained. This may include, fire extinguishers, first aid facilities, exit signs, paths of travel, alarm systems and other relevant emergency equipment on the project.
- There are inspection/test records and maintenance records for relevant emergency equipment and requirements.
- Inspection and audit reports including criteria for emergency equipment and requirements.
- Emergency equipment testing schedule and records of tests.
- Maintenance schedule and records of maintenance.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector
Alarm systems and exit signs may not be seen as necessary on a single residential housing site.

OH13.7 There is a documented process to ensure competent persons have assessed the first aid requirements for the project, and the first aid system in place is appropriate to the worksite and organisational risks.

Example
- There is a documented process/procedure (or similar document) that outlines a requirement, competency and criteria to perform an assessment of first aid requirements on the project, and that the assessment considers specific risks on the project and worksite location.
- First aid services and arrangements for the workplace are appropriate having regard to the type of hazards to persons at the workplace, potential activities to be performed, the number of persons at the workplace and the risk level of identified hazards.
- Evidence that the first aid arrangements are a result of, or are linked to the project risk assessment.
- Review of applicable legislation governing first aid requirements.
- The first aid kit is accessible and is appropriate for the number of persons on-site and the type of hazards identified.
- The type of first aid equipment has been linked to an assessment of the risks involved and by persons with knowledge of the project scope of works and relevant potential injury and/or illness.
| **OH13.8** | There is a documented critical incident response process to ensure assistance is provided to workers who are exposed to critical incidents at work. This process includes, but is not limited to:

- clearly defined roles for the coordination and initiation of critical incident response;
- rehabilitation of injured workers;
- employee assistance/counselling, including trauma counselling; and
- process or procedure for review of incidents to ensure critical incident response procedures are effective.

Example

- There is a documented critical incident response process to ensure assistance is provided to workers who are exposed to critical incidents at work. This process includes, but is not limited to:
 - clearly defined roles for the coordination and initiation of critical incident response;
 - rehabilitation of injured workers;
 - employee assistance/counselling, including trauma counselling; and
- process or procedure for review of incidents to ensure critical incident response procedures are effective.

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector

A generic first aid kit based on an initial first aid assessment would be appropriate, provided any unique site-specific risks are taken into consideration. In other words, the assessment by a suitably competent person of first aid requirements and procedures to be adopted for a residential housing project may be suitable for similar designs and like projects. That is a separate assessment for each house may not be necessary if they have the same risk profile.

<table>
<thead>
<tr>
<th>OH14 Health Surveillance and Exposure Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH14.1</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>Example</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
• Workplace monitoring requirements may include (but not limited to)
 o chemical exposure (including dust and fibres);
 o noise level;
 o lighting levels; and
 o radiation exposure.
• Results of workplace exposure monitoring programs shall lead to corrective actions where necessary, based upon the findings.

<table>
<thead>
<tr>
<th>OH14.2</th>
<th>There is a documented process to ensure inspection, measuring and test equipment related to health and safety is appropriately identified, calibrated, maintained and stored.</th>
</tr>
</thead>
</table>
| **Example** | There is a documented process/procedure (or similar document) that defines a requirement to identify, calibrate, maintain and appropriately store OHS related inspection, measuring and test equipment.
 Maintenance and calibration logs maintained, where applicable.
 Calibration certificates are available and issued by a NATA certified laboratory or ISO9001 certified laboratory, where necessary.
 Verification of calibration stickers on equipment.
 Equipment is stored as per manufacturer’s instructions. |

<table>
<thead>
<tr>
<th>OH14.3</th>
<th>There is a documented process to identify work activities where personal exposure monitoring/health surveillance is required, and there is a documented system for conducting this monitoring/surveillance.</th>
</tr>
</thead>
</table>
| **Example** | There is a documented process/procedure (or similar document) that defines the requirement and methodology for health surveillance/monitoring consistent with relevant jurisdictional requirements and level of risk subject to various risk assessment findings (including within the project risk assessment process).
 A documented process for arranging health surveillance/monitoring with a medical practitioner is addressed.
 Project risk assessment defines specific health monitoring/surveillance on the project.
 Hazardous substance risk assessment has been undertaken.
 It can be demonstrated that health surveillance/monitoring records are secure, confidential and easily retrievable when required. |

<table>
<thead>
<tr>
<th>OH14.4</th>
<th>There is a documented process to ensure information on health surveillance/exposure monitoring is provided to relevant employees.</th>
</tr>
</thead>
</table>
| **Example** | There is a documented process/procedure (or similar document) that defines a requirement and methodology for communicating and providing health surveillance/exposure monitoring information to relevant employees as applicable.
 Records demonstrating that health surveillance/exposure monitoring |
information has been provided to relevant workers.

- Health records are stored appropriately, kept for the minimum time recommended by law and made available to individuals who have been monitored.

OH14.5

There is a documented process to ensure the management of dangerous goods/hazardous substances on the project/site.

Example

- There is a documented process/procedure (or similar document) that outlines the management of storage, handling, and use of hazardous substances and dangerous goods.
- Hazardous substances and dangerous goods are managed in accordance with relevant legislation, codes and standards and considers items such as:
 - labeling, signage and placards;
 - risk assessment requirements;
 - decanting;
 - emergency showers, eyewash station and spill control and cleanup;
 - storage, compatibility and segregation of substances/ materials;
 - prevention and minimising exposure to below workplace exposure standard (WES); and
 - training in safe use of hazardous substance/ dangerous goods.
- A manifest and/or inventory is available for all dangerous goods and hazardous substances on-site, depending on the quantities stated in the relevant legislation.
- Records are available to demonstrate that dangerous goods and hazardous substances have been reviewed prior to use.
- MSDS are readily available for dangerous goods and hazardous substances.
- JSAs/SWMS are specific and incorporate MSDS requirements including exposure controls and specific PPE requirements.
- Regular review is carried out of quantities of dangerous goods and hazardous substances.
- Dangerous goods and hazardous substances being used by workers on site are registered in the inventory/manifest.

OH15 Incident Investigation and Corrective Action

<table>
<thead>
<tr>
<th>OH15.1</th>
<th>There is a documented process to ensure all incidents, non-compliance issues and other system failures impacting on health and safety are reported, recorded, and investigated.</th>
</tr>
</thead>
</table>

Example

- There is a documented process/procedure (or similar document) that defines the OHS reporting process, including incident investigation methodology and recording of issues.
- Records are available to demonstrate that reporting has occurred, has been recorded and investigations have been undertaken as appropriate.
- Hazards, for example, through a company hazard reporting system, are identified and investigated where appropriate.

<table>
<thead>
<tr>
<th>OH15.2</th>
<th>There is a documented process to ensure investigations:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- are undertaken by a competent person(s);</td>
</tr>
<tr>
<td></td>
<td>- identify the factor(s) that led to the hazard, injury, illness, incident or other system failure;</td>
</tr>
</tbody>
</table>
• recommend appropriate corrective actions to be taken;
• involve site/senior management as appropriate; and
• prompt a review of company processes/procedures and work instructions/SWMS where required.

Example
• There is a documented process/procedure (or similar document) that defines a process for performing OHS investigations and competency requirements for those who facilitate or undertake investigations are defined.
• Investigation methodology established and implemented on the project shall be capable of identifying the system cause(s) that contributed to the incident.
• The documented investigation procedure includes the requirement for an analysis to be conducted and a report prepared for review by assigned levels of management and prompts a review of company processes/procedures and work instructions/SWMS, where required.
• The investigation procedure requires that appropriate corrective and preventive actions be taken to prevent the recurrence of an incident.
• Site/senior management as appropriate are involved in the incident investigation process.
• Records of re-evaluation of work practices after the investigation has been completed and reported.
• Evidence of project OHS plan, risk register, procedures and SWMS being updated as a result of investigation.
• Corrective actions reports and/or register.

OH15.3 There is a documented process to record and monitor corrective actions resulting from inspections, incident investigations, hazard reports, internal audits or other processes. The corrective action process sets target completion dates and assigns responsibility for implementing and reviewing the effectiveness of corrective actions.

Example
• There is a documented process/procedure (or similar document) that defines a requirement and methodology for establishing OHS corrective actions, including, where applicable, centralised recording, monitoring and tracking close out of corrective actions.
• A process for reviewing the effectiveness of corrective actions has been established and record of reviews produced.
• Evidence that corrective actions resulting from incidents, inspections, audits and reports are assigned a timeframe for completion.
• Corrective action log/register which records and monitors the progress of corrective actions for all actions arising from incidents, hazard reports, inspections, audits etc.
• Evidence that actions arising from incidents, hazard reports, inspections, audits etc have been closed out in the allocated timeframe.

OH17 Health & Safety Management System Audit

OH17.1 There is a documented process to ensure health and safety management system audits are scheduled and carried out to verify whether activities:
• comply with planned arrangements;
• have been properly implemented and maintained; and
• are contributing towards the effectiveness of the system.

Example
• There is a documented process/procedure (or similar document) that defines a requirement for performing OHS management system audits within the organization and project.
• Audits are performed utilising an established audit criteria/standard and verify adequate implementation and maintenance of established OHS system.
• Records of audits conducted in accordance with the schedule.
• Audit findings are actioned and closed out in a timely manner.

OH17.2 There is a documented audit program that is based on the significance of health and safety risks and the results of previous audits.

Example
• The documented audit schedule and criteria is based on the significance of health and safety risks identified within the risk assessment process (such as the project risk assessment) and previous audits.
• Audits identify or are used to identify additional auditing as required based on the audit results.

OH17.3 There is a documented process to ensure the audit program covers:
• scope;
• frequency;
• methodologies;
• auditor selection and competencies;
• responsibilities; and
• reporting of results.

Example
• There is a documented process/procedure (or similar document) that defines audit requirements and addresses the scope, frequency, methodologies, auditor selection and competencies, responsibilities, and reporting of results.
• OHS plan defines or references the audit procedure.
• Auditor competency records.
• Reports of audit outcomes and proposed actions.

1.3 Scheme Criteria Compliance

SC1 Senior Management Commitment

SC1.1 There is a senior management position/s allocated overall OHS responsibility, including reporting on the OHS management system to the Board or senior management group.

NB
• Senior management in this criterion goes beyond site management and the definition of what constitutes a senior manager may change dependant on the size of the company.
• Position with overall OHS responsibility within the organisation that reports to
Example the Board or senior management team is identified.

- Position statement(s) or role description(s) that confirm allocation of health and safety management system responsibility and specifies reporting requirements to senior management or board.
- Company organisational chart that shows senior management has responsibility for the health and safety management function.
- Minutes of management review meetings chaired or attended by the person(s) responsible for the health and safety management system.
- OHS reports to the board or senior management group.
- Minutes of board meetings or senior management meetings showing review of OHS issues.
- Minutes of OHS management system review meetings.

<table>
<thead>
<tr>
<th>SC1.2</th>
<th>There is a signed OHS policy that is communicated to all parties (e.g. employees, subcontractors and clients) involved in a construction project.</th>
</tr>
</thead>
</table>
| Example | - There is a documented process/procedure (or similar document) that defines the method of communicating the OHS policy content to all site workers/relevant parties.
- A copy of the OHS policy signed by the current Managing Director/CEO, within the defined current policy review period, i.e. it is current.
- An electronic copy of the OHS policy on the company’s web page.
- Policy communicated in induction material and records of induction contents kept.
- Policy included in tender documentation.
- OHS policy displayed in reception/visitor areas.
- OHS policy posted in area accessible to employees e.g. crib room.
- Document has revision numbers indicating review. |

<table>
<thead>
<tr>
<th>SC1.3</th>
<th>The site specific OHS management plan developed for the project:</th>
</tr>
</thead>
</table>
| | - is signed off/authorised by the senior management position that is allocated overall OHS responsibility for the project;
- clearly defines the OHS roles and responsibilities of site management;
- applies to all activities undertaken or proposed to be undertaken by the company; and
- is reviewed/evaluated for effectiveness and updated as required. |
| Example | - The senior management position that is allocated overall OHS responsibility for the project is identified.
- An OHS plan has been established for the project that is site-specific, relevant to site risks and signed off by the current senior management position that is allocated overall OHS responsibility for the project.
- OHS roles and responsibilities of site management are clearly defined and outlined within plan or relevant position descriptions for the project.
- Documented process/procedure for project OHS plan development. |

SECTOR SPECIFIC COMMENTS - Building (residential housing) sector

In the context of a housing project with multiple dwellings, a site-specific OHS plan is required for the overall project, rather than for each individual house within the project.

| SC1.4 | There is a documented process that ensures senior managers regularly visit the site |
and discuss OHS issues with site management and employees.

NB
- This criterion is about Senior Managers at organisational level demonstrating leadership and commitment to OHS.
- It is not sufficient for Senior Managers to merely be able to demonstrate regular visits to the project, they must also be able to demonstrate that OHS issues have been discussed/reviewed in consultation with site management and relevant employees within the context of defined tasks and functions established within the organisation OHSMS.
- ‘Senior Manager’ in this criterion goes beyond site management and the definition of what constitutes a senior manager may change dependant on the size of the company.

Example
- There is a documented process/procedure (or similar document) that defines a requirement for senior managers to visit projects/sites and carry out defined OHS functions that will result in OHS issues being discussed with both site management and workers.
- KPI/position description(s) for senior management.
- Senior Management visit schedule/roster for visits.
- Specific criteria that the Senior Manager reviews when on site.
- Records of visits that review OHS issues for the project and site meetings/toolbox talks demonstrating senior management discuss OHS issues.
- Records of Health and Safety Representative (HSR)/OHS committee meetings showing attendance of senior managers.

SC1.5
There is a documented process at the senior management level for identifying and capturing organisational wide OHS issues and ensuring that lessons learnt are communicated throughout the organisation.

NB
- The intent of this criterion is not aimed at addressing routine day to day site matters, it is intended to demonstrate an escalation process, the capture of organisational wide issues and ensure that lessons are learnt and shared throughout an organisation, as well as demonstrate leadership where required at a senior management level.

Example
- There is a documented process/procedure (or similar document) that defines a requirement and the methodology for senior management to monitor, identify and report on organisational wide OHS issues.
- Demonstrated involvement in incident reporting and investigation processes.
- High potential incident reporting and notification process.
- Lessons learnt mechanisms and senior management OHS directives.
- Minutes of senior management group or board meetings where incidents, OHS performance and other significant OHS issues are reviewed and addressed.
- Reports or presentations made to senior management group or board.
- Position description(s).

SC2 Integration of Design Issues into the Risk Management Process

SC2.1
Where the head contractor is involved in the design or has input into the design, a documented process exists for ensuring risk assessments are undertaken at the
design stage to identify, assess and manage OHS buildability issues that may arise during construction.

| NB | • For all design criteria, the scope of the criteria covers OHS buildability/constructability issues during construction only. The scope of the criteria does not include other lifecycles including end user and ongoing maintenance OHS considerations. |
| Example | • There is a documented process/procedure (or similar document) that defines the methodology (including criteria and tools) for ensuring that when design input is provided (i.e. design and construct contracts) that OHS buildability/constructability (design) risk reviews are performed, recorded and where practicable appropriately managed at design stage and prior to construction commencing.
 • OHS in design risk register.
 • Design specifications to designers including OHS considerations.
 • Contract specifications requiring design review.
 • Evidence of design review.
 • New revisions to design plan.
 • Designs have been assessed and reflect changes where necessary. |

SECTOR SPECIFIC COMMENTS – Building (residential housing) sector

In the context of a housing project with multiple dwellings, a design risk assessment can apply to the overall project rather than for each individual house within the project.

| SC2.2 | Where the head contractor has no input into the design, a documented process exists for ensuring design-related buildability hazards are identified, assessed and managed pre-construction phase. |
| Example | • There is a documented process/procedure (or similar document) that defines the methodology for ensuring that when the head contractor has no input into the design (i.e. construct only contracts) that OHS buildability/constructability (design) risk reviews are requested from the designer/client (and where they are found to be inadequate the risk assessment is performed by the head contractor) and managed through an appropriate process (i.e. project risk assessment).
 • Evidence of design review.
 • New revisions to design plan.
 • Designs have been assessed and reflect changes where necessary. |
| SC2.3 | There is a documented process to ensure residual buildability hazards identified in the design risk assessment are addressed and managed within the project specific risk assessment process. |
| Example | • Documented process/procedure (or similar) that outlines a method for the inclusion/linkage of residual risks and associated controls from the design risk assessment (that have not been able to be eliminated) into the project risk assessment processes.
 • Evidence of the design risk assessment and/or design meeting outcomes being incorporated into the project risk assessment process.
 • Evidence of contract specifications including buildability hazards at design risk
| assessment.
- Evidence of SWMS/JSAs or similar incorporating the residual design related buildability hazards identified.
SC2.4
Example
- There is a documented process/procedure (or similar document) that defines a process for managing changes to design during construction, including a requirement to document, review, assess and communicate risk and the implementation of commensurate controls associated with the change.
- Modification to design is controlled to prevent unauthorised design change or use of redundant design.
- Design approval controls/permissions.
- Design changes have been assessed and JSAs/SWMS reflect the change where necessary.
- Records of design change review.
- Design or drawings register.
- New revisions to OHS plan, JSAs/SWMS, construction plans.
- Communication of updated JSAs/SWMS when change is identified.
- Communications procedure.
- Record of toolbox communications. |

SC3 Whole of Project Consultation

SC3.1 | There is a documented process for communication and consultation regarding OHS information with all workers onsite including;
- a hazard reporting system;
- an election process for health and safety representatives and for establishing health and safety committees allowing workers to choose who will represent them on OHS matters;
- a program to ensure regular meetings with minutes of the meetings available to all workers;
- appropriate training for health and safety representatives/OHS committee members; and
- other arrangements agreed upon onsite, for consultation with workers where a health and safety committee is not required to be established.
NB
- A Health & Safety (H&S) committee will need to be established as per specific legislative requirements; however, it is not mandatory in other situations if alternative arrangements that achieve satisfactory communication and consultation arrangements have been established.
Example
- Documented process/procedure (or similar document) that defines a methodology for OHS communication and consultation on the project.
- The communication and consultation arrangements for the project are specific and addresses issues such as nomination and election of worker OHS representatives, conducting H&S committees, provision of training for representatives/committee members, conducting toolbox meetings and ensuring minute records retained etc.
- Records of toolbox talks/meetings and HSR/ H&S committee meetings,
including attendees and discussion topics.
- HSR/H&S committee member election records.
- Details of the HSR and safety committee members communicated on site.
- Agreed terms of reference/constitution for HSR/H&S committee arrangements and meetings.
- Training records for members of the committee and/or HSRs.
- Communications policy.
- Minutes of HSR/H&S committee meetings distributed (for example posted on notice board).
- Hazard reporting procedure and tools available for reporting hazards
- Hazards/safety alerts.
- Information on the consultative arrangements and OHS issue resolution procedures or flowchart is displayed in the workplace.
- Copies of health and safety publications/alerts posted on notice boards.
- Health and safety information posted in pictorials or in languages other than English (where required).
- Verification with on-site workers to determine effectiveness of OHS information communicated.

SECTOR SPECIFIC – Building (residential housing) sector

The communication and consultation arrangements for a residential housing project may be different to those that are established in the commercial and civil sectors. However, specific communication and consultation arrangements for the project will need to be established and verified as being effective as part of this criterion.

<table>
<thead>
<tr>
<th>SC3.2</th>
<th>There is a documented process for the acquisition and exchange of OHS information with external parties, including customers, suppliers, sub-tier contractors and public authorities.</th>
</tr>
</thead>
</table>
| Example | - Documented process/procedure (or similar document) that outlines a process for identifying and obtaining relevant OHS information and exchanging relevant information with external parties.
 - Client meetings or other forms of liaison with stakeholders (persons in control of the other existing workplace) are undertaken exchange OHS information that could impact on the project and vice versa.
 - Emergency response planning considers interface between the other existing workplace emergency risks and response impact on construction project and vice versa.
 - Communications procedure.
 - Incident reporting procedure.
 - Incident alerts and notifications.
 - Supplier evaluation/assessment procedure.
 - Subcontractor evaluation/assessment procedure.
 - Subcontractor tender package. |

| SC3.3 | There is a documented process to ensure workers or their health and safety representatives are consulted when the head contractor proposes changes that may affect their health and safety. |

<p>| NB | Communication of changes only, i.e. mere instruction, is not consultation. A |</p>
<table>
<thead>
<tr>
<th>SC3.4</th>
<th>There is a documented process that is communicated to workers for resolving OHS issues that affect workers on site.</th>
</tr>
</thead>
</table>
| Example | ● Documented process/procedure (or similar document) that defines a process for raising and resolving OHS issues that can affect workers on the project/site.
● Flowchart or outline of the issue resolution procedure is posted on notice boards accessible to employees.
● Records of communication of OHS resolution process to workers.
● Minutes of HSR/H&S committee meetings.
● Information on progress towards resolution of issues is posted on notice boards.
● Records that demonstrate the issue resolution procedure has been utilised. |

<table>
<thead>
<tr>
<th>SC3.5</th>
<th>There is a documented process to ensure workers, or their health and safety representatives, are involved in the development of site safety procedures including JSAs/SWMS, and that workers are familiar with any JSAs/SWMS relevant to the work being undertaken.</th>
</tr>
</thead>
</table>
| Example | ● Documented process/procedure (or similar document) that outlines a method for ensuring relevant workers or safety representatives are involved in the development of OHS procedures and JSAs/SWMS.
● Communication/consultation procedure.
● Minutes of meetings where JSAs/SWMS have been reviewed.
● A process is available to review each SWMS using criteria that include a review to ensure workers, or their safety representatives, are involved in the development of SWMS prior to commencing work relevant to the SWMS.
● All reviews have been undertaken for all subcontractor activities prior to the commencement of work.
● HSR roles and responsibilities statements.
● Subcontractor JSAs/SWMS record workers involved in their development.
● Evidence of the process of review of each JSA/SWMS using criteria that includes a review of the competencies required for workers involved in the activities associated with the SWMS prior to commencing work relevant to the SWMS.
● Records of relevant worker(s) being inducted into relevant JSAs/SWMS. |

| NB | Evidence of worker(s) signing onto JSAs/SWMS only is not sufficient to demonstrate that relevant workers or representatives have been involved in the development of the relevant JSAs/SWMS. |
SC4 Management of Subcontractor OHS

SC4.1

There is a documented process to ensure details from the head contractor’s OHS plan and/or project risk assessment are provided to subcontractors/workers as applicable to the scope of works they are undertaking.

NB

- The intent of this criterion is to provide the information to the subcontractors prior to or during the tender process, so that project specific OHS hazards and head contractor prescribed controls can be incorporated into the subcontractor processes and safety planning.

Example

- Documented process/procedure (or similar) that outlines a method of communicating the specific and relevant project information from the head contractor OHS plan and/or project risk assessment to the subcontractors prior to (or during) the tender/engagement process.
- Pre-Tender or Pre-Contract interview checklists including the discussion of project safety related information.
- Itemised list of inclusions into tender/contractor packages.
- Evidence of communication of the project safety information, such as (but not limited to) email, Aconnex, Document Transmittal etc.

SC4.2

There is a documented process to ensure OHS Plans/SWMS/JSAs are submitted by subcontractors/workers, and these are reviewed by the head contractor, against defined criteria, and approved prior to the commencement of work.

Example

- Documented process/procedure (or similar document) that outlines a requirement for subcontractors to submit OHS plans/SWMS/JSAs prior to work and a process has been established and implemented to review each SWMS using an objective criteria (including consistency with jurisdictional and project requirements) and then approving its suitability prior to commencing work on the project.
- All reviews have been undertaken for all subcontractor activities prior to the commencement of work.
- The head contractor’s site safety requirements include the provision of subcontractor OHS plans/SWMS/JSAs by the subcontractor.
- Site-specific safety requirements are reflected within Subcontractors’ OHS plans/SWMS/JSAs.
- Subcontractors’ job pack contains OHS plan/SWMS/JSAs.
- All subcontractors on site have relevant OHS plans/SWMS/JSAs.
- All workers are signed on to the relevant JSAs/SWMS.

SC4.3

There is a common system of site induction for all subcontractors and workers.

Example

- Documented process/procedure (or similar document) that outlines a process for site induction of all workers considering general safety induction, site-specific induction and activity based induction.
- For project induction, a site-specific induction training manual/syllabus.
- Records of generic induction for all employees e.g. white card, etc.
- Site-specific induction records or electronic system.
- All workers on site have been inducted into the site and the names of subsequent inducted personnel are documented.

SECTOR SPECIFIC - Building (residential housing) sector
It is acceptable to have a record of induction into a group of residential sites that form a residential project (e.g. a project consisting 20 homes)

<table>
<thead>
<tr>
<th>SC4.4</th>
<th>There is a documented process to ensure subcontractors are involved in OHS inspections /audits.</th>
</tr>
</thead>
</table>
| Example | • Documented process/procedure (or similar document) that outlines a requirement to ensure subcontractors are involved in OHS inspections, OHS audits and where relevant, OHS task observations.
• Evidence of subcontractors actively involved in site OHS inspections/audits/observations including the monitoring of items such as the safety of plant, substances, equipment and temporary structures used by subcontractors.
• Records of inspections and audits conducted on the project, including attendee list.
• Schedule for inspections/audits.
• Corrective action tracking system shows issues identified from inspections and/or audits and subcontractor involved.
• Plant inspection records including logbooks.
• Scaffold and formwork inspection records. |

<table>
<thead>
<tr>
<th>SC4.5</th>
<th>There is a documented process to ensure work is undertaken in accordance with the approved SWMS/JSAs.</th>
</tr>
</thead>
</table>
| Example | • Documented process/procedure (or similar) to verify that physical work activities on the project are being undertaken in accordance with the relevant SWMS/JSA submitted and approved.
• Task observation (or similar) that inspects the work activity using the specific SWMS/JSA.
• ITP’s or similar to ensure controls are implemented as per the SWMS/JSA requirements.
• Schedule of audits of contractor SWMS/JSA and audit records. |

SC5 Project Performance Measurement

<table>
<thead>
<tr>
<th>SC5.1</th>
<th>There is a documented process to establish and regularly monitor performance against OHS objectives and targets defined by the company at the corporate and project level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>• There is a documented process/procedure (or similar document) that defines a methodology for establishing, monitoring and reviewing OHS objectives and targets and explains the process for cascading corporate OHS objectives and targets through to the project/site level.</td>
</tr>
</tbody>
</table>
- Corporate OHS objective and targets register.
- Objectives are specific, measurable and objective. Targets are linked to specific OHS objectives.
- Objectives and targets incorporated within OHS plan.
- Records/reports of regular OHS performance review process e.g. monthly.
- Management review processes measure and consider performance against OHS objectives and targets.
- Records of review and resultant changes made to procedures.
- Minutes from senior management/board meetings.
- Documented process/procedure (or similar document) that outlines a requirement for projects to establish OHS performance metrics, gather and obtain OHS performance data for all workers and measures performance on a regular basis across the projects life.
- There is an implemented OHS performance measurement procedure with defined targets, objectives and performance measures.

SC5.2
There is a documented process to ensure OHS performance reports are produced, regularly reviewed by senior management and results are communicated to site management.

Example
- Documented process/procedure (or similar document) that outlines a process for creating project OHS performance reports on a regular basis (e.g. monthly) which are sent to and reviewed by senior management.
- Consultation/communications procedure.
- Records of performance review by senior management.
- Documented outcomes from the review.
- Records of communications to site management regarding OHS performance.
- Collated OHS performance data reports for the project are produced at regular intervals.
- Position description(s) for organisation’s senior managers.

SC5.3
There is a documented health and safety inspection program that:
- defines intervals for inspections based on risk or statutory requirement;
- incorporates a reporting and corrective action process;
- uses workplace specific checklist(s) where appropriate;
- monitors workplace changes, the effectiveness of control measures, compliance with work procedures and site safety rules; and
- complies with any statutory requirements for inspection e.g. plant, pressure vessels etc.

Example
- There is a documented process/procedure (or similar document) that defines the requirements and criteria for performing health and safety inspections on the project.
- The workplace inspection procedure defines the frequency, content, and competency requirements of personnel conducting the inspections.
- Inspection program is appropriate to the type and level of assessed risks on the project/site.
- Reports and corrective actions have been raised following the identification of non-compliance, non-conformance or issues.
- Inspection program defines and incorporates statutory inspection requirements in relation to plant and equipment e.g. lifting gear, temporary structures, mobile and tower cranes etc.
- Records are available and demonstrate a trend of regular inspections being
SC6 Training Arrangements

<table>
<thead>
<tr>
<th>SC6.1</th>
<th>There is a documented process for providing training and ensuring competency in the knowledge of health and safety legislation and OHS management principles and practices, for senior managers, site managers and supervisors.</th>
</tr>
</thead>
</table>
| NB | - Competencies established through the process etc need to be for management positions, not individuals merely demonstrating their particular training/competency.
- Training course modules must include knowledge of health and safety legislation and OHS management principles and practices.
- Where training courses have been specified evidence needs to be maintained to demonstrate that the training course does indeed ensure competency in the knowledge of health and safety legislation and OHS management principles and practices. |
| Example | - Documented process/procedure (or similar document) that outlines the requirement to provide training and ensure competency of senior managers, site managers and supervisors in OHS legislation and OHS management principles and practices.
- Evidence of a documented formal training needs analysis for the relevant positions, such as senior managers, site managers and supervisors.
- Competencies have been assessed and established to determine the specified training needs.
- Senior managers, site managers and supervisors are provided the necessary training in OHS legislation, management principles and practices to manage their roles.
- Detailed position/role description.
- Training and competency registers
- Individual competency assessments identifying training requirements and needs analysis.
- Training records for senior management, site management and supervisors.
- Training content and/or competencies achieved. |
| SC6.2 | There is a documented process for ensuring all employees and workers have appropriate certification, licences, permits to work, training and meet any other competency requirements that have been established by the company. |
| NB | - It is not acceptable to merely record worker licences without a formal process of identifying competencies required for a work activity and verifying that the relevant certifications, licences, permits to work, training etc is held by the persons performing the work. |
| Example | - Documented process/procedure (or similar document) that identifies the methodology and processes to ensure all employees and workers have appropriate certification, licences, permits to work and training.
- Evidence that all relevant OHS training, certifications, licences and permits to work required for all workers performing work on the project site are consistent with the requirements outlined within relevant OHS legislation, standards and |
codes of practice, and is identified and verified for the work being performed.

- Training and competency register.
- JSAs/SWMS identify licences, training, permits to work and certifications necessary to perform activities.
- Verification of competency process.
- Sight certifications and licences.
- Evidence that workers have been adequately instructed to perform their job and this instruction is documented.

SC6.3

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Documented process/procedure (or similar document) that outlines a process for ensuring that all OHS training provided to employees is recorded and records are retained.</td>
</tr>
<tr>
<td>- A project specific training register that demonstrates actual competencies required and identifies any training needs or gaps.</td>
</tr>
<tr>
<td>- Personnel records.</td>
</tr>
</tbody>
</table>

1.4 OFSC targeted hazards

These hazards are those identified as high-risk construction work in the National Standard for Construction Work. In addition to the subcriterion identified within each of the 19 hazards, there is a final subcriterion “Other hazard related activity” that allows Federal Safety Officers to identify any non-compliant hazard related activity not already captured by the subcriterion.

H1 Working at Heights

<table>
<thead>
<tr>
<th>H1.1</th>
<th>All areas where there is a risk of a person falling more than two metres are identified and controlled in accordance with the hierarchy of control.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Project risk assessment and relevant JSAs/SWMS shall identify the risk of person falling greater than 2m</td>
</tr>
<tr>
<td>- Project risk assessment and relevant JSAs/SWMS document and select controls consistent with the hierarchy of control.</td>
</tr>
<tr>
<td>- Fall zones and activities with a risk of falling greater than 2m are adequately managed on the site.</td>
</tr>
<tr>
<td>- Work practices on the site utilise fixed platforms and edge protection, or Elevated Work Platforms in favour of fall arrest or fall restraint systems.</td>
</tr>
<tr>
<td>- Work at height ought to be eliminated where practicable and the wearing of safety harnesses as a primary means of fall protection must be a last resort.</td>
</tr>
</tbody>
</table>

| **H1.2** | A Scaffold Plan has been prepared by a competent scaffold designer where required by legislation, and where not required by legislation, a risk assessment has been conducted to determine the need for a Scaffold Plan. All scaffold has been erected by suitably qualified personnel, and it is in accordance with Scaffold Plans where applicable. |
Example
- Documented process/procedure (or similar) that outlines a method of conducting a risk assessment on the scaffolding requirements across the project, and ensuring a Scaffolding Plan is obtained where legislation or risk determines the need.
- Where a Scaffolding Plan is not developed for basic low-risk scaffold, arrangements are in place to ensure the scaffold is installed in accordance with the manufacturers specifications.
- The Scaffolding Plan is developed specific to the project requirements including elevation and section drawings.
- A suitably qualified scaffold designer completes the Scaffolding Plan.
- The Scaffolding Plan meets the requirements of relevant Australian Standards, Codes of Practice, and legislative requirements.
- The scaffold design registration (manufacture) is approved by the relevant state regulatory authorities and obtained by the Head Contractor prior to erection.
- A Safety Report (or similar) from the designer is obtained that specifies the hazards associated with the design.
- Audit and inspection records checking the installation are completed in accordance with the Scaffolding Plan and manufacturers specifications.

| H1.3 | A handover certificate has been obtained from the person responsible for scaffold erection prior to use. |

| Example |
- Documented process/procedure (or similar) to ensure that scaffold handover certificates are supplied and verified against planned arrangements prior to workers being authorised to enter the scaffold.
- Example scaffold handover certificate, including reference to relevant Australian Standards.
- Scaffold handover certificate is signed off by a suitably competent scaffolder as appropriate to the type and nature of the scaffold.
- Scaffold handover certificate is displayed prominently at entry to the scaffold.

| H1.4 | Temporary structures onsite are regularly inspected by suitably qualified/competent personnel. |

| Example |
- Documented process/procedure (or similar) that outlines a method to ensure inspections are completed for temporary structures onsite at required frequencies.
- Formal inspection regime/schedule for temporary structures, including formal inspection prior to pour/loading or accessing the temporary structure, and including ongoing inspections.
- Records of inspection of scaffolding, formwork, or other temporary structure are completed against defined requirements, design specifications and relevant Australian Standards and Codes of Practice.
- Inspections are completed by qualified e.g. engineer or competent persons specific to the nature and type of structure inspected.
- Standard ITP or inspection checklists incorporated into the project management plan or subsequent subcontractor documentation.

| H1.5 | Safe systems of work taking into consideration work at heights have been established for the erection and dismantling of temporary structures from which people may fall. |
| Example | • Documented process/procedure (or similar) that outlines a method of assessing all temporary structures for potential falls from height (including falling objects), with safe systems of work established for the erection and dismantling of temporary structures in accordance with relevant legislation, Australian Standards and Codes of Practice.
• Safe systems of work include protection of both workers completing the erection and dismantle of temporary structures from falls and other non-related workers on the project.
• Work at height has been eliminated where practicable and the wearing of a safety harness as a primary means of fall protection is last resort.
• Erection and Dismantle methodology completed for the temporary structure.
• Evidence of training of workers in the erection and dismantle methodology.
• SWMS incorporates or references the erection and dismantle methodology. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H1.6</td>
<td>Work processes are instigated to prevent working from ladders.</td>
</tr>
</tbody>
</table>
| Example | • Documented process/procedure (or similar document) outlines a process to prevent ladder use on a project site.
• Evidence of communication of the policy/procedure, including with subcontractors.
• Ladder use restrictions are reflected within subcontractors’ JSAs/SWMS.
• Site rules and induction content.
• Work platforms are used and ladders are not readily used on the project.
• Ladder approval and permit system only apply by exception where it is not possible to work from other suitable work platforms, including platform ladders.
• Ladder risk assessment record or similar.
• Use of ladders is addressed within the project risk assessment.

Note: Work from a platform ladder with edge protection is not considered a ladder under the criteria. |
| H1.7 | There is acceptable access and egress from work areas at height in accordance with the hierarchy of controls. |
| Example | • Documented process/procedure (or similar document) that outlines suitable means of access and standards for the project, including a requirement for all access ladders to extend 1m past platforms.
• Stair access is preferred and should be provided where practicable, particularly where materials are required to be carried.
• Inspection processes review access and egress on the site.
• Housekeeping standards are upheld on the project.
• Temporary walkways and stairs provide safe access and egress.
• Access ladders are tied off and positioned on a 1:4 pitch. |
| H1.8 | Risks associated with falling objects are identified, assessed and controlled in accordance with the hierarchy of controls. |
| Example | • Project risk assessment and relevant JSAs/SWMS shall identify and assess the risk of falling objects on the project |
- The project risk assessment and relevant JSAs/SWMS document and determine falling object controls.
- Penetrations are covered, secured and marked and adequate for the circumstances applying.
- Scaffold and edge protection contains toeboards and/or containment screening.
- Hoarding and gantries have been erected to prevent falling object risks to the public.

H1.9

Where fall prevention/ arrest equipment is being used on site:

- A risk assessment has been conducted;
- Workers have been adequately instructed and trained in the use of such equipment;
- There is a maintenance and inspection schedule for the equipment;
- Attachment points are designed and certified by suitably qualified persons;
- Attachment points are installed by suitably qualified persons and are regularly inspected; and
- Emergency procedures detail the possible working at height areas and the actions to be taken after an arrested fall has occurred.

Example

- Relevant JSAs/SWMS address specific emergency response requirements for working at height and identify rescue equipment and personnel.
- Documented process/procedure (or similar document) that identifies a requirement for inspection and maintenance of fall prevention records.
- Inspection and maintenance records are available, including pre-use inspection and longer term maintenance checks etc, e.g. harness and lanyard register.
- Harnesses and lanyards available for use on site are marked and within inspection date.
- JSAs/SWMS reflect inspection and maintenance requirements.
- Documented process/procedure (or similar document) that identifies a requirement for anchor points to be installed by competent persons and inspected prior to use and on a regular basis
- Anchor points are designed by a register engineer and installed by a competent person(s)
- Anchor point(s) are designed and installed in accordance with minimum relevant force rating (kN) requirements, as appropriate for the particular use/circumstance.
- JSAs/SWMS reflect design, installation, testing, certification and inspection requirements.
- Emergency response protocols have been established and prescribe specific actions to be taken if a person is suspended under fall arrest.
- Emergency equipment is as specified by the relevant JSAs/SWMS, available and sufficient to enable retrieval within a timely manner.
- Training records for instruction in the use of fall prevention/ arrest equipment

H1.10

Other hazard related activity.
H2 Telecommunication Towers

H2.1

All areas where there is a risk of a person falling more than two metres are identified, assessed and controlled in accordance with the hierarchy of controls.

Example
- Project risk assessment and relevant JSAs/SWMS shall identify and address the risk of persons falling greater than 2m.
- Project risk assessment and relevant JSAs/SWMS document and select controls consistent with the hierarchy of control.
- Fall zones and activities with a risk of falling greater than 2m are adequately managed on site.
- Work at height ought to be eliminated where practicable and the wearing of safety harnesses as a primary means of fall protection must be a last resort.

H2.2

Electrical and radiation hazards have been identified, assessed and controlled.

Example
- Project risk assessment and relevant JSAs/SWMS shall identify any electrical hazards associated with power, assess risk and outline control measures including consideration of exclusion zones and isolation where possible
- Project risk assessment and relevant JSAs/SWMS document and select controls consistent with the hierarchy of control – elimination of exposure to live installations and/or avoidance of live work, where practicable.
- Highest order electrical safety controls have been implemented on the project.
- Isolation registers.
- High Voltage (HV) switching procedure.
- Radio Frequency (RF) Radiation has been identified as an environmental hazard, risks of exposure assessed and controls established to prevent or minimise exposure.
- RF isolation register.

H2.3

There is acceptable access and egress from all work areas.

Example
- A risk assessment that outlines suitable means of access taking into account the hierarchy of control.
- Inspection processes review access and egress on the site.
- Tower design allows for safe access and egress in accordance with relevant standards and codes.

H2.4

Risks associated with falling objects have been controlled and adequate protection systems are in use.

Example
- Project risk assessment and relevant JSAs/SWMS shall identify and assess the risk of falling objects on the project.
- The project risk assessment and relevant JSAs/SWMS document and determine falling object controls, including, for example, use of lifting cages and tool lanyards etc.
- Exclusion zones established in accordance with the risk assessment and JSAs/SWMS, including physical barricades and signs erected.
H2.5 Where fall prevention/ arrest equipment is being used on site:

- Workers have been adequately instructed and trained in the use of such equipment;
- There is a maintenance and inspection schedule for the equipment;
- Attachment points are installed by suitably qualified persons and are regularly inspected; and
- Emergency procedures identify the possible hazards involving working at heights, the actions to be taken if an arrested fall has occurred, and procedures dealing with possible remote locations.

Example

- Documented process/procedure (or similar document) that identifies a requirement for anchor points to be installed by competent persons and inspected prior to use and on a regular basis.
- Anchor points are designed by a register engineer and installed by a competent person(s).
- Anchor point(s) are designed and installed in accordance with minimum relevant force rating (kN) requirements, as appropriate for the particular use/circumstance.
- JSAs/SWMS reflect for design, installation, testing, certification and inspection requirements.
- Relevant JSAs/SWMS address specific emergency response requirements for working at height and identify rescue equipment and personnel.
- Emergency response protocols have been established and prescribe specific actions to be taken if a person is suspended under fall arrest.
- Emergency equipment is as specified by the relevant JSA/SWMS, available and sufficient to enable retrieval within a timely manner.
- Emergency response and equipment etc is suitable for the possible remote locations involved.
- Trained emergency personnel are on site.

H2.6 Procedures have been developed to deal with working in remote and isolated locations.

Example

- Documented process/procedure (or similar) that ensures hazards associated with working in a remote location (where applicable) are assessed, documented and controlled.

H2.7 Other hazard related activity.

H3 Demolition

H3.1 There is a demolition plan which identifies all hazards and assigns risks and controls to each identified hazard.

Example

- A demolition plan has been established in accordance with applicable legislation, standards (i.e. AS 2601) and any other relevant codes applicable to the work, e.g. hot work standard.
- All applicable demolition phases of the project have been incorporated within the project risk assessment (or similar) and identify associated hazards, assesses
risks and outlines controls to be implemented as per applicable legislation, standards and codes.

<table>
<thead>
<tr>
<th>H3.2</th>
<th>Building structure and materials have been considered prior to starting the demolition.</th>
</tr>
</thead>
</table>
| **Example** | • Structure and site investigations have been performed and in accordance with recognised standards.
• Engineering design details, plans and certifications of all demolition loadings, including temporary loads associated with plant and machinery and impact loads etc.
• Investigation report.
• Investigations have considered hazardous materials (including asbestos if relevant) and have been taken into account within the demolition work plan.
• Asbestos survey report and/or register. |

<table>
<thead>
<tr>
<th>H3.3</th>
<th>Location of all services has been identified and documented and the relevant services have been disconnected or made safe by a suitably qualified person prior to demolition.</th>
</tr>
</thead>
</table>
| **Example** | • Service location surveys have been performed and the location of all services (e.g. LP gas, LNG, medical gases, electrical, hydraulic, data etc) have been documented and marked in relevant location.
• Documented process/procedure (or similar document) that outlines a requirement to disconnect or make safe (including protection) all relevant services, and obtain clearance certificate/confirmation from relevant entity and/or qualified tradesperson.
• Evidence of verification of isolations of services.
• Lock out and tag out process is implemented, where applicable. |

<table>
<thead>
<tr>
<th>H3.4</th>
<th>There are controls in place to prevent falls from height, including appropriately fixed covers and guards on openings and penetrations.</th>
</tr>
</thead>
</table>
| **Example** | • Fall risks and penetrations are identified within JSAs/SWMS, project risk assessment and/or demolition plan and control measures established in accordance with the hierarchy of control, jurisdictional legislation, standards and codes.
• Temporary bracing, shoring or propping is inspected on daily basis to ensure it is tight, stable and secure.
• Openings and penetrations are securely covered or guarded to prevent inadvertent access.
• Penetrations controls are regularly monitored and inspected. |

<table>
<thead>
<tr>
<th>H3.5</th>
<th>There are appropriate protective structures in place to prevent falling objects.</th>
</tr>
</thead>
</table>
| **Example** | • The project risk assessment and/or demolition plan has determined the appropriate controls to prevent falling object risks, where applicable, and the level of protective structures to be put in place is in accordance with the hierarchy of control.
• Hoarding and overhead protective structures have been properly established in |
accordance with the project risk assessment and demolition plan to protect people where the demolition adjoins a public area.
- Hoarding and overhead protective structures are, at a minimum, in accordance with jurisdictional legislation, standards and codes requirements.
- Design and certification by registered engineer of overhead protective structure conforming to relevant loading requirements.

<table>
<thead>
<tr>
<th>H3.6</th>
<th>Other hazard related activity.</th>
</tr>
</thead>
</table>

H4 Asbestos

H4.1

There is a demolition/construction plan which identifies, assesses and controls all risks relating to the disturbance or removal of asbestos in accordance with the relevant legislation and state requirements, and this has been reviewed by the head contractor.

Example

- Documented process/procedure (or similar) that outlines the method of identifying and incorporating the management of asbestos containing material at the project into the demolition and construction methodologies.
- Hazardous materials survey (or similar) and Asbestos Register completed by a suitably qualified person and formally reviewed by the head contractor prior to mobilisation on the project.
- Demolition Plan incorporates asbestos management as per the legislation, Australian Standards and Codes of Practice.
- Asbestos Management/Removal Plan developed for all removal, including (but not limited to) training, monitoring, surveillance, testing, decontamination, containment and disposal.
- Project risk assessment process includes and links asbestos related hazards from the design review, hazardous materials survey, and incorporates risks and controls through to SWMS/JSAs.

H4.2

An emergency plan addressing the risks involved is developed for the asbestos removal zone.

Example

- Documented process/procedure (or similar) to ensure emergency plans incorporate or are specifically developed for the asbestos workers working within the asbestos removal zone.
- Emergency planning includes decontamination and emergency exit of asbestos removal workers.
- Emergency planning considers the need for additional emergency facilities to be provided for asbestos workers as required.

H4.3

Any business/workers removing asbestos materials are appropriately licensed and trained.

Example

- Documented process/procedure (or similar document) that identifies the requirement for a removal licence, or other similar competency and/or training requirements based on jurisdictional requirements and relevant material type.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
</table>
| H4.4 | Safe systems of work are designed in accordance with the requirements for handling, removal and disposal of asbestos containing materials.
Example | Asbestos procedures that adequately address safe removal, handling, transport and disposal of bonded and friable materials – as a minimum, in accordance with relevant legislation, standards and codes of practice.
Asbestos air monitoring procedures and records.
Implementation of PPE, clothing, de-contamination and containment management procedures.
Asbestos clearance certificate.
Transport and disposal certificates.
Adequate monitoring processes and critical incident response procedures. |
| H4.5 | Building structure and materials have been identified and considered prior to commencement of demolition/construction.
Example | Documented process/procedure (or similar document) that identifies a requirement to arrange a survey by suitably qualified persons of the building or structure to identify asbestos containing materials prior to any potential disturbance.
Asbestos register or similar.
Asbestos survey reports.
Engineering survey, as required. |
| H4.6 | There are controls in place to prevent inadvertent asbestos contact with members of the public and other workers in the vicinity.
Example | Documented process/procedure (or similar document) that identifies a process for managing risk of exposure to members of the public.
Removal process incorporates enclosure and negative extraction where necessary.
Warning signage and placard installed.
Materials have been disposed of within a restricted area and contained. |
| H4.7 | There is a documented process to ensure air monitoring is undertaken by a qualified and competent independent person.
Example | Documented process/procedure (or similar) to ensure that a qualified 3rd party independent person undertakes asbestos related air monitoring during asbestos removal and clearance.
Asbestos Removal Control Plan (or similar) detailing the type and extent of the asbestos air monitoring requirements for the project.
Air monitoring records available and communicated to workers.
Air monitoring completed using NATA accredited company using NATA certified and calibrated air monitors. |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H4.8</td>
<td>There is a documented process to ensure a clearance inspection certificate is obtained prior to the area being returned to normal use.</td>
</tr>
</tbody>
</table>
| Example | - Documented process/procedure (or similar) to ensure all asbestos removal works incorporate the completion of a clearance inspection prior to the area being returned to normal use.
- Process includes the clearance inspection to be completed by an occupational hygienist using NATA calibrated and certified equipment, with results assessed by a NATA accredited laboratory prior to issuance of the clearance inspection certificate.
- Process includes clearance testing to be completed by a licensed removalist registered with the relevant State regulatory agency in accordance with relevant legislation, Australian Standards and Codes of Practice.
- Clearance Inspection Certificates are available for separate portions of asbestos removal works. |
| H4.9 | There is a documented process to ensure health surveillance is undertaken for workers involved in asbestos removal. |
| Example | - Documented process/procedure (or similar) to ensure personal health surveillance is undertaken for all workers involved in asbestos removal, with surveillance completed by a suitably experienced registered medical practitioner.
- Procedure/process to give the health report to the asbestos worker, the state regulator (where required), and any other organisation as required by law.
- Head contractor holds health surveillance records for all individual workers completing asbestos removal works on the project.
- Procedure/process for health surveillance records storage and disposal (40 years). |
| H4.10 | All workers on the site have been informed that asbestos removal work is to be carried out and when the work is to occur. |
| Example | - Documented process/procedure (or similar) to outline the method to isolate the asbestos removal area/s and inform all other workers on the project of the asbestos removal and when it is to occur.
- Toolbox and daily pre-start records.
- Contract inclusions.
- Communication via the project risk assessment.
- Signage placed on entry to asbestos removal areas.
- Induction records. |
| H4.11 | Decontamination practices are documented and implemented in accordance with relevant legislation and codes of practice. |
| Example | - Documented process/procedure (or similar) that outlines a method for the personal, equipment and workplace decontamination processes to be developed and implemented specific to the asbestos removal works (eg. within the asbestos removal control plan).
- Decontamination methodology consistent with relevant Codes of Practice and Australian Standards. |
- Records of training of asbestos removal workers in the decontamination procedure/process.
- Change rooms with dirty, buffer, and clean zones established.
- Procedure/process to ensure contaminated material is suitably encapsulated and marked in accordance with relevant Codes of Practice and Australian Standards.

H4.12 Other hazard related activity.

H5 Structural Alterations/Temporary Support Structures

H5.1 There is a demolition/construction plan which identifies all hazards relating to this work task, and assigns risks and controls to each identified hazard.

Example

- The Demolition and/or Project Safety Plan identifies hazards in relation to structural alterations and temporary support structures (e.g. scaffolding, formwork, falsework, propping, wall retention, guys, shoring, and bracing), assesses relevant risks associated and outlines controls in accordance with the hierarchy of control and adoption of applicable jurisdictional legislation, standards and codes.
- Involves engineering design and certification by suitably qualified and registered engineers, in accordance with applicable design standards.
- Design drawings and certifications in accordance with design and relevant standards, including, for example: AS1576 for scaffolding design; AS3850 for tilt-up construction bracing; AS3610 for formwork and back propping design etc.
- Project risk assessment and relevant JSAs/SWMS identify and assess controls to mitigate the risk associated with structural alterations and temporary support structures, and ensure the protection of any adjoining structures and/or structural elements.
- Associated task erection and dismantling hazards that may be taken into account include (but are not limited to) access and egress, working at heights and fall prevention, control of falling objects, manual handling, lighting and noise.

H5.2 Building structure and materials have been considered prior to starting the alterations to the structure.

Example

- Documented process/procedure (or similar document) that identifies a process for ensuring the evaluation of structure and materials (including but not limited to material type, structural loadings, wind loadings and integrity) and obtaining engineering input from a qualified registered engineer, for the purposes of preparing the detailed design and methodology.
- Structural engineering report, advice and/or written instructions.

H5.3 Structural support (including scaffolding and formwork) is

- designed by a qualified designer,
- detailed on up-to-date drawings and plans,
- installed by suitably qualified persons,
- verified as correctly installed prior to use (handover certificate etc)
- subject to regular inspections.

Example

- Documented process/procedure (or similar document) that identifies the requirement to ensure structural support is designed, inspected and installed by qualified persons (as defined) and in accordance with jurisdictional legislation, relevant standards and codes.
- A documented requirement to maintain and update drawings and plans.
- Formwork and back propping is designed and specified in accordance with AS3610 and formwork engineer has defined stripping requirements and timeframes.
- Formwork, falsework and/or scaffold inspection checklist and records.
- Pre-pour formwork inspection and certification records in accordance with design detail (engineer’s drawings) and relevant standards.
- Concrete pour inspection and monitoring records.
- Subcontractor competency and licence records (where relevant).
- Loading calculations take into account machinery/plant loading and lateral loading from debris (where relevant).
- Documented inspection requirements and records of inspections.

H5.4

There are systems in place to regularly review and monitor the effectiveness of the support structure.

Example

- Documented process/procedure (or similar document) that identifies a requirement and defines a method and relevant tools for maintaining and monitoring the effectiveness of the support structure.
- Formwork, backpropping, tilt-up bracing and/or scaffold inspection checklist and records.
- Pre-pour formwork inspection and certification records.
- Concrete pour inspection and monitoring records.

H5.5

There are appropriate protective structures/systems in place to prevent
- persons falling more than two metres; and
- falling objects.

Example

- Fall risks and penetrations are identified within JSAs/SWMS, project risk assessment and/or demolition plan, and control measures are established in accordance with the hierarchy of control, jurisdictional legislation, standards and codes.
- Hoarding and overhead protective structures have been established to protect people where the structure adjoins a public area.
- Hoarding and Overhead protective structure is in accordance with jurisdictional legislation, standards and codes.
- Design and certification by registered engineer of overhead protective structure conforming with relevant loading requirement.
- Temporary bracing, shoring or propping is inspected on a regular basis to ensure it is tight, stable and secure.
- Openings and penetrations are covered or guarded to prevent inadvertent
access or falls of persons or objects.
- Penetrations controls are regularly monitored and inspected.

| H5.6 | Other hazard related activity. |

H6 Confined Space

H6.1 A JSA/SWMS and subsequent safe work process has been developed to ensure all related hazards and risks have been assessed and controlled, taking into account:
- relevant training needs, in accordance with associated legislation and standards (AS 2865);
- the nature of the work;
- air quality;
- duration of the exposure;
- the level of risk involved with the confined space entry;
- the number of workers exposed; and
- potential emergency situations.

Example
- Documented process/procedure (or similar document) that outlines a process for managing confined space entry and work risks, including, training, atmospheric contaminants and exposure, relevant risk and emergency planning.
- Project risk assessment and relevant JSAs/SWMS identify and assess controls to mitigate the risks of confined spaces entry and work.
- Register of confined spaces on the project site.
- Training and competency register.
- Subcontractor confined space training records.
- Risk assessment and rating of confined spaces on the project site.
- Confined space entry and work permit.
- Atmospheric test results and relevant assessment of risk.
- Confined space emergency plans/protocols.

H6.2 Exposure levels have been identified and are within acceptable limits, in accordance with legislative requirements.

Example
- Documented process/procedure (or similar document) that identifies the relevant and applicable exposure standards and threshold limits, and a process for testing confined space atmospheres to be within specified limits prior to entry.
- Atmospheric testing is specific to target contaminants and as a minimum includes LEL, Oxygen and CO.
- Atmospheric testing is representative of contaminant concentration in entire space.
- Confined space permit.
- Atmospheric test results and relevant assessment of risk.

H6.3 Emergency procedures that have been developed specifically address and control the confined space, and have been practised.
Example
- An emergency plan or response protocol that addresses rescue and retrieval of personnel from a confined space including specifying emergency equipment, emergency personnel, a process for monitoring well being of personnel and maintaining a means of communication.
- Drill records of confined space response.
- Confined space rescue and retrieval equipment is available and suitable.

H6.4 There is documented evidence that the atmosphere is continually monitored for changes in atmospheric contamination.

Example
- Documented process/procedure (or similar document) that identifies a requirement to ensure continual monitoring of confined space atmosphere.
- Project risk assessment and relevant JSAs/SWMS outline the method for ensuring continuous monitoring of atmosphere.
- Monitoring records and logs.
- Testing instruments are capable of continuous monitoring.
- Testing and calibration certificates and records for testing instruments.
- Confined space permit records.

H6.5 Appropriate PPE is being used by workers to minimise the exposure to atmospheric contaminants in accordance with the JSAs/SWMS and relevant legislation.

Example
- Documented process/procedure (or similar document) that identifies a process for selection, maintenance and use of PPE used to prevent exposure in a confined space.
- Respiratory protection is suitable to protect against target contaminants and minimise exposure to below workplace exposure standards.
- JSAs/SWMS define specific PPE requirements and are consistent with requirements.

H6.6 Other hazard related activity.

H7 Excavation

H7.1 The excavation has a safe means of access and egress.

Example
- Documented process/procedure (or similar document) that identifies the means for ensuring safe access and egress to an excavation.
- Project risk assessment and relevant JSAs/SWMS outline method for ensuring safe means of access and egress to and from an excavation.

H7.2 The shoring/battering is designed by a suitably qualified person and there are relevant drawings indicating the methods to be used.

Example
- Documented process/procedure (or similar document) that identifies the
means for controlling ground stability associated with excavations on the project and where shoring, benching or battering is employed, that it shall be designed by a registered professional engineer (geo-technical).

- Project risk assessment and relevant JSAs/SWMS identify and assess risk of collapse and outline means for ensuring stability of excavation.
- Drawings for shoring and/or benching/battering design exist.
- Engineer certification.
- Shoring installation instructions.

<table>
<thead>
<tr>
<th>H7.3</th>
<th>The trench is regularly inspected by a competent person to ensure controls are used and remain adequate.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>- Documented process/procedure (or similar document) that identifies competency requirements and outlines a requirement and methodology to perform inspections of excavations on a regular basis, as determined by qualified assessment.</td>
</tr>
<tr>
<td></td>
<td>- Inspection records.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H7.4</th>
<th>Barriers, signage and fencing have been established in and around the trench.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>- Documented process/procedure (or similar document) that identifies a process for ensuring adequate isolation and prevention of access to an excavation consistent with jurisdictional legislation, codes and standards.</td>
</tr>
<tr>
<td></td>
<td>- Project risk assessment and relevant JSAs/SWMS identify and assess risk of falling into a trench/excavation and outline means for preventing access with consideration of excavation depth and location of site. For example, may be reduced risk in remote locations.</td>
</tr>
<tr>
<td></td>
<td>- Warning signage and placards are installed and consistent with relevant legislation, standards and codes.</td>
</tr>
<tr>
<td></td>
<td>- Self supporting barricades/barriers and/or fencing are installed around the perimeter of excavations and at least 900mm high.</td>
</tr>
<tr>
<td></td>
<td>- Self supporting barricades/barriers and/or fencing which are not capable of or designed as edge protection must be set back a distance from the edge of the trench or excavation.</td>
</tr>
<tr>
<td></td>
<td>- In some circumstances certain barriers and/or fencing may need to be suitable to prevent access of public and thus may include 1800mm high hoarding or fencing in urban areas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H7.5</th>
<th>Above ground and underground services have been identified and made safe.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>- Documented process/procedure (or similar document) that identifies a process for identifying services that could be contacted with during the course of excavation and/or site access.</td>
</tr>
<tr>
<td></td>
<td>- Project risk assessment and relevant JSAs/SWMS identify and assess risk of contacted above ground and underground services and outline means for preventing contact with services.</td>
</tr>
<tr>
<td></td>
<td>- Electrical and service exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.</td>
</tr>
<tr>
<td></td>
<td>- Non-mechanical excavation means are utilised on the site when necessary.</td>
</tr>
<tr>
<td></td>
<td>- Service detection reports and diagrams.</td>
</tr>
</tbody>
</table>
- Service locations and depths are identified and locations marked on the project site.
- Signage and placards are erected in locations to warn workers of services.
- Physical barriers are installed to prevent inadvertent contact with services.
- Lock out and tag out procedures and processes.
- Approvals and records of disconnection from service entity.

<table>
<thead>
<tr>
<th>H7.6</th>
<th>The confined space aspects have been suitably identified, controlled and are continually monitored.</th>
</tr>
</thead>
</table>
| Example | • The project risk assessment and relevant JSAs/SWMS may identify confined space aspects of excavation where relevant and outline measures consistent with documented confined space procedures and processes.
 • Inspection records.
 • Records of atmospheric monitoring.
 • Confined space permit records.
 • Confined space entry register and warning signage. |

<table>
<thead>
<tr>
<th>H7.7</th>
<th>The risks involved with mobile plant working in and around the excavation have been assessed and controlled.</th>
</tr>
</thead>
</table>
| Example | • The project risk assessment and relevant JSA/SWMS identifies and assesses risk of mobile plant operating in vicinity to open excavations and outlines control measures consistent with relevant standards and codes.
 • Vehicle and mobile plant are prevented from encroaching excavation zone of influence unless designed to accommodate load.
 • Warnings and physical barriers are erected to prevent inadvertent collapse of excavation or plant entry into open excavations. |

<table>
<thead>
<tr>
<th>H7.8</th>
<th>The safety of the surrounding structures and areas has been assessed.</th>
</tr>
</thead>
</table>
| Example | • Documented process/procedure (or similar document) that identifies a process for ensuring geo-technical assessment to determine potential impact on surrounding structures and areas.
 • Written geo-technical advice and reports.
 • The project risk assessment and relevant JSAs/SWMS identify risks to surrounding structures and areas during excavation (where relevant) and outline control measures consistent with engineering advice.
 • Where applicable, temporary supports have been designed and installed in accordance with applicable standards and codes. |

<table>
<thead>
<tr>
<th>H7.9</th>
<th>Emergency procedures have been established for the excavation.</th>
</tr>
</thead>
</table>
| Example | • An emergency plan or response protocol that defines potential emergency scenarios associated with an excavation on the project. Scenarios must be relevant to site risks and may include (but not limited to):
 o flooding and water ingress;
 o contact with hazardous services including electrical and gas;
 o stability and collapse of excavation;
 o fall from height; |
- confined space and retrieval; and
- mobile plant rollover.

Drill records of excavation related emergency response scenarios.

H7.10

Workers within the excavation are adequately trained and instructed and are aware of the emergency procedures.

Example

- Documented process/procedure (or similar document) that identifies a requirement to ensure emergency response procedures have been communicated to workers and trained and instructed in response protocols.
- Excavation workers are aware of applicable emergency response protocols.
- Training records.
- Toolbox and other communication records.

H7.11

Possible water sources have been identified and control measures implemented to remove the risk of flooding and/or engulfment due to water infused soil instability.

Example

- Documented process/procedure (or similar document) that identifies a process for identifying and controlling potential risks of water engulfment within excavations.
- Geo-technical review shall identify and assess the risk of rising, irruption or inrush of water.
- Control measures to prevent flooding and/or provide early warning of flooding risk have been implemented on the project e.g. membranes, sumps, exploratory warning holes, lowering water table etc.

H7.12

Other hazard related activity.

H8 Tunnels

H8.1

The excavation has a safe means of access and egress.

Example

- Documented process/procedure (or similar document) based upon the project risk assessment and tunnel safety plan that identifies a process for ensuring safe access and egress within the tunnel, into and out of the tunnel including consideration of adequate access and emergency lighting, ventilation, self rescue and refuge provisions, temporary stairs and platforms.
- Tag board or other suitable entry control system.
- Processes are in place to ensure pedestrians are segregated (including physical barriers where practicable) from mobile plant and vehicle movements, including designated pedestrian access and haul roads.
- Clear pathways are provided and spoil piles are regularly removed.

H8.2

The shoring/battering is designed by a suitably qualified person and there are relevant drawings indicating the methods to be used.

Example

- Documented process/procedure (or similar document) that identifies a
requirement and methodology to ensure geo-technical investigation and ongoing monitoring processes of ground conditions and design of suitable controls and supports (e.g. shoring, battering, shotcreting, rock bolting etc).

- Installation of supports is in accordance with design.
- Mapping progress of tunnel excavation against detailed design and engineering certification.
- Records of ground support design and method of installation.

H8.3 The tunnel is regularly inspected by a competent person to ensure controls are used and remain adequate.

Example
- Documented process/procedure (or similar document) that identifies a process for ensuring a geo-technical engineer competent in the relevant tunnelling method(s) performs regular inspection of the tunnel considering (but not limited to) ground conditions, adequacy of stability controls, conformance with design and monitoring support performance.
- Daily inspection records.
- Training and competency records.
- Tunnel inspection plan.

H8.4 Barriers, signage and fencing have been established in and around the tunnel.

Example
- Documented process/procedure (or similar document) that identifies the means for ensuring plant operations and tunnelling activities are isolated and sufficient warning provided.
- Controls such as physical barriers, signage and temporary fencing have been erected in and around the tunnel and on the project site.

H8.5 Above ground and underground services have been identified and made safe.

Example
- Documented process/procedure (or similar document) that identifies a process for identifying services that could be contacted with during course of tunnelling activities.
- Project risk assessment and relevant JSAs/SWMS identify and assess risk of contact with above ground and underground services and outline means and processes for preventing contact with services.
- Electrical and service exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.
- Non-mechanical excavation means are utilised on the site when necessary.
- Service detection reports and diagrams.
- Service locations and depths are identified and locations marked on the project site.
- Signage and placards are erected in locations to warn workers of services.
- Physical barriers are installed to prevent inadvertent contact with services.
- Lock out and tag out procedures and processes.
- Approvals and records of disconnection from service entity.

H8.6 The confined space aspects have been suitably identified, controlled and are continually monitored.
| Example | The project risk assessment, tunnel safety plan and relevant JSAs/SWMS recognises the risks associated with confined spaces in tunnelling and ensures relevant controls are established consistent with the hierarchy of control and relevant legislation, standards and codes.

- Confined space risks such as engulfment, flooding, atmospheric contamination and oxygen deficiencies are regularly monitored through atmospheric testing programs and inspection processes.

- Ventilation design plans, surveys and monitoring.

- Emergency evacuation provisions and procedures established and implemented.

- Test and inspection records available. |

| H8.7 | The risks involved with mobile plant working in and around the tunnel have been assessed and controlled. |

| Example | The project risk assessment has identified the risk of mobile plant movement within the tunnel, assessed risk and outlined appropriate controls in accordance with the hierarchy of control, including physical barriers, warning devices, restricted work practices, work scheduling, sufficient illumination, reflective clothing, site traffic movement plans etc. |

| H8.8 | Adequate emergency procedures have been established for the tunnel. |

| Example | An emergency plan or response protocol that potential emergency scenarios associated with a tunnel on the project. Scenarios must be relevant to site risks and may include (but are not limited to):

- flooding and water ingress;
- contact with hazardous services including electrical and gas;
- loss of power;
- stability and collapse of tunnel and/or open excavation;
- fall from height; and
- mobile plant rollover.

- Drill records of tunnel related emergency response scenarios. |

| H8.9 | The safety of the surrounding soils, structures and areas has been assessed. |

| Example | Documented process/procedure (or similar document) that identifies a requirement to ensure investigations have been performed and controls put in place to protect surrounding soil and structures, and that relevant risks have been assessed. |

| H8.10 | Workers within the tunnel are adequately trained and instructed, and are aware of the emergency procedures. |

| Example | Documented process/procedure (or similar document) that identifies a requirement to ensure all tunnel workers have been instructed in safe entry and access and trained in specific emergency scenarios applicable to the project site.

- Emergency training records.

- Induction records. |
H8.11 Possible water sources have been identified and control measures implemented to remove the risk of flooding and/or engulfment.

Example
- Documented process/procedure (or similar document) that identifies a process for identifying and controlling potential risks of water flooding and/or engulfment within tunnels.
- Geo-technical review shall identify and assess the risk of rising, irruption or inrush of water.
- Control measures to prevent flooding and/or provide early warning of flooding risk have been implemented on the project e.g. membranes, sumps, exploratory warning holes, lowering water table, ground freezing etc.

H8.12 Other hazard related activity.

H9 Explosives

H9.1 There is a demolition/blast plan which identifies all hazards and assigns risks and controls to each identified hazard.

Example
- A demolition plan or blast plan for civil works has been established and identifies all relevant hazards associated with the use, storage and transportation of explosives for blasting, assesses relevant risks and identifies controls to minimise risk to workers and members of the public.
- Blasting risks may include (but are not limited to) noise, exposure to fumes and dust, physical exposure to blast and debris, impact on ground stability and structures etc.
- The requirements for use, transport and storage of explosives are defined within the demolition/blast plan and in accordance with jurisdictional legislation, standards and codes (if relevant).
- Notification of blasting is provided to relevant regulators and within the applicable timeframe (as required).
- All relevant permits (e.g. shot firers permit), licences to use, store and transport explosives have been obtained (as required).

H9.2 Building structure and materials have been considered in the plan, before the explosives are used.

Example
- Demolition or blast plans identify a requirement to perform relevant investigations of structures and/or ground conditions prior to using explosives.
- Impacts of blasting on adjoining structures and public spaces have been considered within plans and specific controls have been implemented on the project.

H9.3 Location of all services has been identified and documented, and the relevant services have been disconnected or made safe by a suitably qualified person prior to using explosives.
<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Documented process/procedure (or similar document) that identifies a process for identifying services that could be affected when using explosives.</td>
<td></td>
</tr>
<tr>
<td>• Project risk assessment and relevant JSAs/SWMS identify and assess risk of contact with above ground and underground services, and outline means for preventing impact on services.</td>
<td></td>
</tr>
<tr>
<td>• Electrical and service exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.</td>
<td></td>
</tr>
<tr>
<td>• Service detection reports and diagrams are available.</td>
<td></td>
</tr>
<tr>
<td>• Service locations and depths are identified and locations marked on the project site.</td>
<td></td>
</tr>
<tr>
<td>• Signage and placards are erected in locations to warn workers of services.</td>
<td></td>
</tr>
<tr>
<td>• Physical barriers are installed to prevent inadvertent contact with services.</td>
<td></td>
</tr>
<tr>
<td>• Lock out and tag out procedures and processes have been established and implemented on the project.</td>
<td></td>
</tr>
<tr>
<td>• Approvals and records of disconnection from service entity.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H9.4</th>
<th>There are controls in place to prevent noise contamination to workers and the public.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>• Demolition or blast plans identify controls to prevent noise exposure to workers and prevent impact on the public. Controls may include exclusion zones, blast scheduling during non-peak times, noise barriers, protective equipment, worker rotation, noise minimising blast methods appropriate to materials (ground or structure), selection of appropriate explosives etc.</td>
</tr>
<tr>
<td></td>
<td>• Controls must be sufficient to minimise noise exposure below WES for 8 hour time weighted average (where relevant to standard 8 hour shift duration) and peak exposure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H9.5</th>
<th>There are appropriate protective systems in place to prevent persons and plant being injured by flying debris.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>• Demolition or blast plans identify protective systems to be implemented on the project site to prevent persons or plant being impacted by debris.</td>
</tr>
<tr>
<td></td>
<td>• Exclusion zones and blast layout plan records.</td>
</tr>
<tr>
<td></td>
<td>• Communication protocols and physical barriers are implemented to ensure effective exclusion measures are achieved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H9.6</th>
<th>Other hazard related activity.</th>
</tr>
</thead>
</table>

H10 Pressurised Gas

<table>
<thead>
<tr>
<th>H10.1</th>
<th>There is a demolition/construction plan which identifies all hazards and assigns risks and controls to each identified hazard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>• The project risk assessment, demolition or project safety plan identifies the hazard of pressurised gas pipelines and identifies control measures in</td>
</tr>
<tr>
<td>H10.2</td>
<td>The possible confined space/environmental aspects have been suitably identified, controlled and are continually monitored.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Example | - The project risk assessment identifies confined space aspects of the pipeline where relevant and outlines measures consistent with documented confined space procedures and processes.
- The project risk assessment identifies project specific environmental aspects that may impact on pressurised gas pipelines, assesses relevant risks and details controls to be implemented.
- The impact of any demolition, excavation, piling, blasting and use of explosives, hot work, outrigger placement, mobile plant movements and temporary structure placement have been considered in assessing risks associated with pressurised gas pipelines.
- Hot work procedures and permit processes/records.
- Inspection records.
- Records of atmospheric monitoring.
- Confined space permit records.
- Confined space entry register and warning signage. |

<table>
<thead>
<tr>
<th>H10.3</th>
<th>Location of all gas services has been identified and documented and the relevant services have been disconnected or made safe by a suitably qualified person prior to working on or near pressurised gas pipelines.</th>
</tr>
</thead>
</table>
| Example | - Documented process/procedure (or similar document) that identifies a process for identifying pressurised gas pipelines that could be affected during the course of construction activities.
- Project risk assessment and relevant JSAs/SWMS identify and assess risk of contact with above ground and underground pressurised gas pipelines and outline means for preventing impact on services.
- Gas services exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.
- Service detection reports and diagrams/maps are available.
- Pipeline locations and depths are identified and locations marked on the project site.
- Signage and placards are erected in locations to warn workers of services.
- Physical barriers are installed to prevent inadvertent contact with services.
- Positive isolation and tag out procedures and processes have been established and implemented on the project.
- Approvals and records of disconnection from service entity have been obtained. |

<table>
<thead>
<tr>
<th>H10.4</th>
<th>Workers have been adequately instructed and trained in the safe work methods regarding work on pressurised gas pipelines, and hold suitable qualifications to carry out the works.</th>
</tr>
</thead>
</table>
Example
- JSAs/SWMS, procedures or similar documents identify minimum training and competencies required to carry out works on pressurised gas pipelines.
- Records of induction into applicable JSA/SWMS content.
- Subcontractor qualifications, training records and certifications where relevant.

H10.5
There are appropriate emergency procedures which are communicated to all relevant workers.

Example
- An emergency plan or response protocol that addresses potential emergency scenarios associated with pressurised gas pipelines. Scenarios must be relevant to site activities and risks.
- Drill records of pipeline related emergency response scenarios.
- Records of emergency communication that may include induction and toolbox talks.

H10.6
Other hazard related activity.

H11 Chemical, Fuel or Refrigerant Lines

H11.1
There is an appropriate OHS plan which identifies all hazards and assigns risks and controls to each identified hazard relating to this task.

Example
- The project risk assessment or similar document considers all hazards associated with work nearby chemical, fuel or refrigerant lines, assesses relevant risks and outlines controls with consideration of hierarchy of control and requirements as per jurisdictional legislation, standards and codes.
- Workers have been informed about materials present, relevant hazards, level of risk and controls to be employed.
- Mechanical lifting over an active chemical/fuel/refrigerant line is restricted and/or controlled.
- Physical barriers or other controls are installed to prevent potential vehicle impact with an active chemical/fuel/refrigerant line.
- Hot work procedures and permit to work system.
- Gas testing and monitoring programs.

H11.2
The type of chemical/fuel/refrigerant is identified and there are systems in place to:
- prevent uncontrolled escape of chemical/fuel/refrigerant; and
- identify handling and emergency control measures in accordance with relevant MSDS, legislation and standards.

Example
- Chemical/fuel/refrigerant lines are labelled and marked in accordance with jurisdictional legislation, standards and codes.
- Emergency response plans and/or emergency response protocols detail uncontrolled release emergency scenarios and are in accordance with MSDS, legislation and standards.
- Emergency alarm and shut off systems are installed.
- Spill containment equipment and cleanup is available.
- Fire protection, detection and emergency fire fighting equipment is available where necessary.

H11.3 Location of all services has been identified and documented and the relevant services have been disconnected or made safe by a suitably qualified person prior to working on or near chemical/fuel/refrigerant lines.

Example
- Documented process/procedure (or similar document) that identifies a process for identifying chemical/fuel/refrigerant lines that could be impacted with during course of project work scope and/or site access.
- Project risk assessment and relevant JSAs/SWMS identify and assess risk of contacting both above ground and underground lines and outlines a means for preventing contact with services.
- Exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.
- Non mechanical excavation means are utilised on the site where necessary.
- Service detection reports and diagrams.
- Service locations and depths are identified and locations marked on the project site.
- Signage and placards are erected in locations to warn workers of services.
- Isolation procedures are performed by trained process technicians (or similar) and include positive isolation, e.g. double block and bleed methods.
- Lock out and tag out procedures and processes.
- Approvals and records of disconnection from service entity.
- A documented site rule or procedure that prevents hot tapping and similar methods being performed on the project.

H11.4 Workers hold suitable qualifications and have been adequately instructed and trained in the safe work methods regarding work on chemical, fuel or refrigerant lines.

Example
- Documented process/procedure (or similar document) that identifies minimum training and competencies required to perform work on relevant chemical, fuel or refrigerant lines.
- JSAs/SWMS and training records.
- Training and competency register.

H11.5 The necessary PPE is available and being used to minimise risk of inadvertent contact.

Example
- Specific PPE requirements have been incorporated within relevant JSAs/SWMS, in combination with other higher order hazard control and in accordance with MSDS recommendations and manufacturer instructions.
- Documented process/procedure (or similar document) that addresses selection, maintenance and use of PPE on the project site.
- PPE is available and adequate to protect against chemical and material types, concentrations and potential exposure levels.
- Relevant PPE is available to protect workers in the event of an emergency e.g. escape masks available and carried on person where required.
H11.6 Other hazard related activity.

H12 Electrical

H12.1 Earth leakage protection is provided on all electrical supply and installations, and where portable generators are used, earthing mechanisms are employed as necessary.

Example
- Documented process/procedure (or similar document) that identifies and incorporates the need for earth leakage protection on all electrical installations (temporary and permanent) and earthing requirements on generators has been identified and is consistent with manufacturer’s requirements, jurisdictional legislation, codes and standards.
- Earth leakage protection has been provided on switchboards and temporary distribution boards installed on the project site.

H12.2 Electrical equipment, including RCDs, is regularly inspected and tested in accordance with the relevant legislation.

Example
- Documented process/procedure (or similar document) that identifies a process and methodology for ensuring test and tag of construction wiring, switchboards, portable electrical equipment, leads and RCDs (safety switches) consistent with jurisdictional legislation, standards and codes.
- RCD test program incorporates push button test and operating time tests (in accordance with AS/NZS 3760) for portable and non-portable RCDs.
- Construction wiring and temporary switchboards on the construction site have been inspected and tested.
- Test and tag register.
- RCD test register.
- Installation handover certificates and/or certificates of compliance as required by jurisdictional legislation and codes.

H12.3 Electrical leads are up off the ground, adequately protected and less than 30 metres in length.

Example
- Documented process/procedure (or similar document) that identifies the means for ensuring all electrical leads on the project are kept of the ground, protected from potential damage and less than 30m in length.
- JSAs/SWMS identify minimum requirements in relation to electrical leads including protection, maximum length and off the ground.
- Electrical leads are in accordance with minimum conductor cross sectional area and Amp rating requirements as per jurisdictional legislation, standards and codes.
- Lead stands or hooks are available on the project.

H12.4 CBs for sub circuits emanating from main and distribution boards are adequately identified at their origin.
H12.5
There is a documented lock-out and tag-out process for isolation of electrical energy sources.

Example
- Documented process/procedure (or similar document) that identifies a process and methodology for ensuring and performing lock out and tag out for isolation of electrical energy sources.
- Physical lock out, including personal locks where required, is used when performing electrical isolation on the project.
- Relevant JSAs/SWMS reflect site requirements for lock out and tag out when performing electrical isolation on the project.
- Isolation register.
- Isolation locks and personal danger tags available.

H12.6
Other hazard related activity.

H13 Contaminated / Flammable Atmosphere

H13.1
A JSA/SWMS has been developed to ensure air quality and ventilation needs have been assessed and controlled, taking into account the nature of the work, duration of the exposure and the number of workers exposed.

Example
- Documented process/procedure (or similar document) that identifies a process and methodology for identifying atmospheric pollutants that may pose a risk to health and safety, including hazardous contaminants and flammable/explosive atmospheres.
- JSAs/SWMS identify contaminated/flammable atmosphere and details controls to
 - prevent or minimise exposure; and
 - minimise risk of fire and/or explosion.
- Hot work procedure and associated hot work permit controls.
- Controls are in place to prevent inert atmospheres and oxygen deficient atmospheres.
- Fan and local exhaust ventilation is utilised to remove contaminants and dilute flammable atmospheres.

H13.2
Exposure levels have been identified and are within acceptable limits, in accordance with legislative requirements.
| Example | • Exposure limits have been identified, assessed, documented and are in accordance with relevant legislation, standards and codes.
• Atmospheric monitoring/testing is performed and exposure on the project is below exposure limits.
• JSAs/SWMS contain target limits and control action levels to mitigate exposure below exposure limits. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H13.3</td>
<td>Emergency procedures that have been developed specifically address and control the contaminated atmosphere.</td>
</tr>
</tbody>
</table>
| Example | • An emergency plan or response protocol has been established that identifies potential emergency scenarios associated with contaminated atmospheres on the project. This may include (but not limited to):
 o Fire and/or explosion;
 o Contaminant over-exposure; and
 o Contaminant poisoning.
• Drill records of contaminated related emergency response scenarios. |
| **H13.4** | There is documented evidence that the atmosphere is continually monitored for changes in atmospheric contamination. |
| Example | • Documented process/procedure (or similar document) that identifies a requirement and specifies the methodology for continuous monitoring.
• Project risk assessment and relevant JSAs/SWMS outline method for ensuring continuous monitoring of atmosphere.
• Monitoring records and logs.
• Testing instruments are capable of continuous monitoring.
• Where relevant, permit records. |
| **H13.5** | Appropriate PPE is being used by workers to minimise the exposure to atmospheric contaminants in accordance with the JSAs/SWMS and relevant legislation. |
| Example | • Documented process/procedure (or similar document) that identifies a process for selection, maintenance and use of PPE used to prevent exposure to atmospheric contaminants.
• Respiratory protection is suitable to protect against target contaminants and minimise exposure to below workplace exposure standards.
• JSAs/SWMS define specific PPE requirement and are consistent with specified requirements. |
| **H13.6** | Other hazard related activity. |
| **H14 Tilt-up / Precast Concrete** |
H14.1 | There are detailed design drawings and specifications prepared and certified by a qualified engineer for the design, installation and bracing of the panels, in |
H14.2 The method of erecting the panels has been assessed and documented, and installation and bracing of such panels is in accordance with documented procedures compliant with AS3850 and specifications for proprietary items used.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Documented process/procedure (or similar document) that identifies a</td>
</tr>
<tr>
<td>requirement and methodology to assess and document panel erection</td>
</tr>
<tr>
<td>method and bracing and temporary support installation requirements in</td>
</tr>
<tr>
<td>accordance with AS3850 and specifications for proprietary items used.</td>
</tr>
<tr>
<td>• Proprietary specifications and instructions.</td>
</tr>
<tr>
<td>• Panel installation and bracing procedures.</td>
</tr>
<tr>
<td>• Bracing and temporary support drawings.</td>
</tr>
<tr>
<td>• Panel lift plans, including crane selection and exclusion zones etc,</td>
</tr>
<tr>
<td>and lifting requirements established and implemented - in accordance</td>
</tr>
<tr>
<td>with jurisdictional legislation, standards and codes.</td>
</tr>
<tr>
<td>• JSAs/SWMS reflect panel erection method and bracing requirements as</td>
</tr>
<tr>
<td>defined within procedures and specifications.</td>
</tr>
</tbody>
</table>

H14.3 The panels meet the required technical specifications and have been inspected prior to installation.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Documented process/procedure (or similar document) that identifies a</td>
</tr>
<tr>
<td>process and methodology for verifying each panel conforms with the</td>
</tr>
<tr>
<td>technical specifications and AS3850, and an inspection is performed by</td>
</tr>
<tr>
<td>a competent person prior to installation.</td>
</tr>
<tr>
<td>• Panel technical specifications.</td>
</tr>
<tr>
<td>• Panel checklist and records.</td>
</tr>
<tr>
<td>• Panel lifting and temporary bracing checklist and records.</td>
</tr>
</tbody>
</table>

H14.4 All bracing and anchorage devices have been suitably inspected in accordance with a defined process compliant with AS3850.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Documented process/procedure (or similar document) that identifies a process</td>
</tr>
</tbody>
</table>
and criteria for the inspection of bracing and anchorage devices in accordance with AS3850, and competency requirements of inspection personnel is defined.

- Inspection process verifies the following
 - conformance with drawings;
 - a check of torque bolts within 24hr of erection and then ongoing basis;
 - regular visual inspection of braces and bracing insert connections; and
 - prior to removing bracing, all structural elements affecting stability are inspected to ensure a secure fix to panels.
- Panel checklist and records.
- Panel lifting and temporary bracing checklist and records.
- Competency and training register.

H14.5
There are controls in place to prevent falls from height, including appropriately fixed covers and guards on openings and penetrations.

Example
- JSAs/SWMS identify tasks at height (e.g. panel attachment, brace attachment and removal, caulking and patching) and establish controls in accordance with the hierarchy of control and that consider EWP and mobile scaffolding.
- Penetrations and unprotected edges/fall zones have been identified and physically isolated using barriers, covers and guards where appropriate.
- Penetrations and openings on the project are managed to prevent risk of fall and/or falling objects.

H14.6
Other hazard related activity.

H15 Traffic

H15.1
Traffic movement has been assessed and subsequent traffic management plans and controls have been established.

Example
- Project risk assessment and relevant JSAs/SWMS identify the risk of traffic movement, and risk controls are selected to minimise the impact of both traffic on the site, and the site’s activities to impact on traffic.
- Documented process/procedure (or similar document) that identifies a process and criteria/specifications for establishing a traffic management plan (TMP) and associated traffic control plans (TCP).
- TMP has been established where an interface with a public access road exists.

Note: Terminology may vary between jurisdictions.

H15.2
Traffic management plans are approved by the relevant local authority.

Example
- Documented process/procedure (or similar document) that identifies a process for seeking and gaining approvals from local road authorities prior to commencing works.
- Approval records/correspondence.
H15.3
Traffic management (including public, plant and person) is implemented in accordance with the site-specific traffic management plans.

Example
- Documented processes/procedures have been established and implemented to ensure adequate inspection, monitoring and maintenance of traffic management arrangements and devices.
- Traffic control arrangements and devices have been established consistent with the TCP contained within the TMP.
- Pedestrian pathways are protected and/or re-directed from potential interface with site traffic.
- Registers of installation and removal of traffic control devices and arrangements.

H15.4
Workers responsible for implementing traffic management are suitably licensed and trained.

Example
- Documented process/procedure (or similar document) that identifies a requirement to ensure TMP auditors, personnel responsible for implementing TMP and traffic controllers have performed the relevant level of training and obtained a licence as required by the relevant jurisdiction.
- Training and competency register.
- Training and licence records.
- Traffic management JSAs/SWMS.

H15.5
Traffic management is regularly monitored for tampering/vandalism, and is reviewed as the project develops.

Example
- Documented process/procedure (or similar document) that identifies a requirement to ensure regular inspection and monitoring of traffic control devices and ongoing suitability of the TMP.
- Daily inspection program (at start and end of day) incorporating traffic control arrangements has been implemented.
- Daily inspection records available.
- Record of TMP review performed.

H15.6
Other hazard related activity.

H16 Mobile Plant

H16.1
Any subcontractors/workers operating mobile plant are verified as being appropriately licensed and/or their competency to operate the plant has been verified.

Example
- Documented process/procedure (or similar document) that identifies a process and methodology for verifying mobile plant operator licence and competency.
- Verification of competency process.
- Minimum mobile plant operator licences have been documented.
- Relevant mobile plant JSAs/SWMS.
- Subcontractor training records and licence records.
- Plant competency assessment records.
- Plant competency declarations.
- Appropriately licensed personnel are engaged in mobile plant operations on the project.

H16.2	A plant risk assessment has been carried out on all items of plant and safe operating instructions produced which includes maintenance, service and inspection details.
Example	**Note:** The intent of plant risk assessment is to determine the inherent OHS risk associated with a piece of plant and the potential interface that workers may have with the plant on the project site. A plant risk assessment does not replace the requirement to perform a JSA/SWMS or vice versa.
	- Documented process/procedure (or similar document) that identifies a requirement to ensure all mobile plant on the project has a documented and acceptable plant risk assessment (prior to use) that identifies hazards associated with each relevant stage of the plant lifecycle, assesses risks and details controls consistent with the hierarchy of control and in accordance with relevant legislation, standards and codes.
	- Potential lifecycles to be considered in plant risk assessments may include (but are not limited to) delivery, operation, maintenance and inspection.
	- A procedure or similar document that identified a requirement to ensure safe operating instructions are developed for each piece of plant and includes maintenance, service and inspection tasks relevant to the plant and consistent with OEM requirements.

H16.3	The pre-start inspection is specific to the needs of the type of plant, and is completed at the designated intervals.
Example	- Documented process/procedure (or similar document) that identifies the means for ensuring daily inspection of mobile plant prior to use is specific to the requirements of the plant.
	- Pre-use inspections performed are plant specific and as defined within original equipment manufacturer (OEM) manuals.
	- Pre-start inspections consider safety critical controls.
	- Inspection records/logbook available with plant.

H16.4	Warning devices are fitted and in good working order.
Example	- Documented process/procedure (or similar document) that identifies the means for ensuring plant warning devices (e.g. audible reversing alarms and flashing lights) are installed and regularly monitored to ensure ongoing functionality.
	- Plant pre-acceptance records.
	- Plant pre-use inspection records verify warning devices.
	- Site inspection records.

<p>| H16.5 | All earthmoving equipment is fitted with compliant ROPS/FOPS where required by legislation, a risk assessment has been conducted to determine the need for ROPS/FOPS for all other earthmoving equipment, and seat belts are fitted. |</p>
<table>
<thead>
<tr>
<th>Example</th>
<th>Note: The intent of the criteria is not that ALL earthmoving equipment is fitted with both Roll Over Protection Structures (ROPS) and Falling Object Protection Structures (FOPS). Earthmoving equipment should meet relevant standards surrounding prescribed requirements for protective structures of any kind.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Documented process/procedure (or similar document) that identifies a process for determining the need for ROPS and/or FOPS for earthmoving equipment used on the project and details requirements.</td>
</tr>
<tr>
<td></td>
<td>• Where ROPS and/or FOPS is not prescribed by legislation, plant risk assessments have been performed and determine the need or otherwise for protective structures.</td>
</tr>
<tr>
<td></td>
<td>• ROPS and/or FOPS are engineered and fitted with compliance plates in accordance with relevant Australian Standards or International Equivalents</td>
</tr>
<tr>
<td></td>
<td>• Seatbelts have been installed and functioning on plant where ROPS have been installed.</td>
</tr>
<tr>
<td>H16.6</td>
<td>There is a documented process for the ongoing maintenance of plant.</td>
</tr>
<tr>
<td>Example</td>
<td>• Documented process/procedure (or similar document) that identifies a process and criteria for ensuring mobile plant is managed and maintained at defined intervals consistent with OEM maintenance requirements.</td>
</tr>
<tr>
<td></td>
<td>• Plant maintenance records.</td>
</tr>
<tr>
<td></td>
<td>• Site plant register (or similar document) that monitors plant use and relevant maintenance performed.</td>
</tr>
<tr>
<td></td>
<td>• Plant maintenance records are consistent with plant readings.</td>
</tr>
<tr>
<td>H16.7</td>
<td>There is a documented process for managing risks associated with services, and above ground and under-ground services have been identified to prevent inadvertent contact.</td>
</tr>
<tr>
<td>Example</td>
<td>• Documented process/procedure (or similar document) that identifies a process for identifying services that could be contacted with during the course of plant use including plant site movements.</td>
</tr>
<tr>
<td></td>
<td>• Project risk assessment and relevant JSAs/SWMS identify and assess risk of contacted above ground and underground services and outline means for preventing contact with services.</td>
</tr>
<tr>
<td></td>
<td>• Electrical and service exclusion zones have been identified, communicated and maintained on the project site in accordance with jurisdictional requirements.</td>
</tr>
<tr>
<td></td>
<td>• Service detection reports and diagrams.</td>
</tr>
<tr>
<td></td>
<td>• Service locations and depths are identified and locations marked on the project site.</td>
</tr>
<tr>
<td></td>
<td>• Signage and placards are erected in locations to warn workers of services.</td>
</tr>
<tr>
<td></td>
<td>• Physical barriers are installed to prevent inadvertent contact with services.</td>
</tr>
<tr>
<td>H16.8</td>
<td>Site vehicle movement plans have been developed and local traffic management and controls have been established.</td>
</tr>
<tr>
<td>Example</td>
<td>• Documented process/procedure (or similar document) that identifies a requirement and criteria for establishing and implementing a site-based traffic movement plan on the project and to prevent workers’ exposure to plant movements.</td>
</tr>
</tbody>
</table>
- Interaction of mobile plant movement and pedestrians/workers is managed and controlled in accordance with the hierarchy of control.
- Traffic movement plans and site traffic control maps have been established and address interaction of mobile plant movement and pedestrians/workers.
- Local traffic controls are implemented on the project.

Note: The scope of this criterion excludes traffic management requirements as defined within Hazard Criteria H15. The purpose of the criteria is to prevent incidents involving movement of plant on a project site

| H16.9 | Other hazard related activity. |

H17 Artificial Extremes of Temperature

<table>
<thead>
<tr>
<th>H17.1</th>
<th>A JSA/WMS has been developed to ensure typical ambient conditions have been assessed and controlled, taking into account the nature of the work, environmental conditions at the time of work, and duration of the exposure.</th>
</tr>
</thead>
</table>
| **Example** | • Documented process/procedure (or similar document) that identifies a process for identifying extremes in ambient conditions that may pose a risk to health and safety, including temperature, humidity, and radiant heat and air movements.
• JSAs/SWMS identify ambient extremes and details controls to prevent or minimise exposure.
• Secondary effects of exposure have been considered including fatigue, loss of coordination and impaired decision making. |

<table>
<thead>
<tr>
<th>H17.2</th>
<th>Exposure levels have been identified and are within acceptable limits, in accordance with legislative requirements.</th>
</tr>
</thead>
</table>
| **Example** | • Exposure limits are documented and in accordance with relevant legislation, standards and codes.
• Ambient exposure monitoring is performed and exposure is below acceptable limits.
• JSAs/SWMS contain target limits and control levels to mitigate exposure below exposure limits. |

<table>
<thead>
<tr>
<th>H17.3</th>
<th>Emergency procedures consider the potential conditions that may result in heat stress or hypothermia.</th>
</tr>
</thead>
</table>
| **Example** | • An emergency plan or response protocol has been established that considers heat stress and/or hypothermia emergency scenarios where relevant.
• Drill records of temperature related emergency response scenarios. |

<table>
<thead>
<tr>
<th>H17.4</th>
<th>There is evidence of suitable work-rest regimes to provide safeguard workers exposed to extremes of temperature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>• JSAs/SWMS identify relevant work-rest and job rotation administrative controls</td>
</tr>
</tbody>
</table>
to minimise exposure.
- Job rotation log and/or roster.
- Maximum personnel exposure periods can be observed on the project site.

H17.5
Appropriate PPE, drinking water, shelter and amenities are available to workers exposed to extremes of temperature.

Example
- JSAs/SWMS identify specific PPE requirements to minimise impact of temperature extremes.
- Appropriate PPE is available on the project site.
- Shelter and amenities is provided in nearby vicinity to work activities.
- Drinking water and other hydration is available on the project site.

H17.6
Other hazard related activity.

H18 Diving

H18.1
A JSA/SWMS has been developed to ensure hazards have been identified, assessed and controlled, taking into account the nature of the work, foreseeable contingencies and the training of workers exposed to the hazards.

Example
- Diving JSAs/SWMS have been established and identify, assess and control risks in accordance with jurisdictional legislation, standards and codes and taking into account the nature of work, foreseeable contingencies and divers’ competency for underwater work.
- Diving hazards may include (but are not limited to) hyperbaric and physiological factors, marine animals, shipping movements, water inlets, use of hazardous materials or explosives, entrapment, entanglement with moving parts, falling objects etc.
- Record of diver competency (diving certificate) is available and conforms with jurisdictional requirements.

H18.2
Work methods have been developed in accordance with legislative requirements and applicable standards (e.g. AS 2299).

Example
- Documented occupational dive work methods are available and are in accordance with legislative requirements and standards.

H18.3
Emergency and rescue procedures that have been developed specifically address and control the risks involved with the works.

Example
- An emergency plan or response protocol has been established that considers diving related emergency scenarios where relevant, and include first aid, rescue, evacuation to a nearest recompression facility and missing divers.
- Resuscitation procedures are available.
- Emergency equipment which may include first aid, oxygen, rescue boards, flotation devices and ropes etc are available at the project site.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H18.4</td>
<td>There is evidence of continual monitoring of associated hazards e.g. water conditions and weather.</td>
</tr>
</tbody>
</table>
| **Example** | - Documented process/procedure (or similar document) that identifies a process for ensuring continual monitoring of risks associated with diving works and including methods such as inspection, task safety observation and use of dive safety logs.
- Weather, water and tide conditions are reviewed prior to dive work and monitored throughout the dive.
- Dive safety logs available.
- Inspection and observation records. |
| **H18.5** | Appropriate PPE/protection is in place reduce the level of risk and exposure to an acceptable level, in accordance with the JSA/SWMS and relevant legislation. |
| **Example** | - Specific PPE/protection is available and worn during activities as detailed within JSAs/SWMS and relevant jurisdictional legislation. |
| **H18.6** | Other hazard related activity. |

H19 Construction Work In, Over or Adjacent to Water/Liquids Where Risk of Drowning

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H19.1</td>
<td>A JSA/SWMS has been developed to ensure hazards have been identified, assessed and controlled, taking into account the nature of the work, foreseeable contingencies and the training of workers exposed to the hazards.</td>
</tr>
</tbody>
</table>
| **Example** | - Project risk assessment or similar identifies areas where there is a risk of drowning, assessment of risk and controls to be implemented on site during the project.
- JSAs/SWMS have been developed for work in, over or adjacent to water/liquids and address foreseeable contingencies and worker training.
- Training and competency register.
- Training records.
- Monitoring processes have been established and implemented on the project. |
| **H19.2** | Work methods have been developed in accordance with legislative requirements and applicable standards. |
| **Example** | - Submitted JSA/SWMS format and content contained within is in accordance with jurisdictional legislation and applicable standards. |
| **H19.3** | Emergency and rescue procedures that have been developed specifically address and control the risks involved with the works. |
| Example | • An emergency plan or response protocol has been established that considers water rescue emergency scenarios where relevant.
• Drill records of water rescue related emergency response scenarios.
• Means of rescue is readily available and sufficient to respond in a timely manner. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H19.4</td>
<td>There is evidence of continual monitoring of associated hazards e.g. electrical, falls from height, water conditions and weather.</td>
</tr>
</tbody>
</table>
| Example | • Documented process/procedure (or similar document) that identifies a process to ensure ongoing monitoring of associated water hazards during the project scope.
• Inspection checklists.
• Inspection records.
• Task observation records. |
| H19.5 | Appropriate PPE/protection is in place to reduce the level of risk and exposure to an acceptable level, in accordance with the JSA/SWMS and relevant legislation. |
| Example | • JSAs/SWMS identify specific PPE requirements for tasks including (but not limited to) flotation, lifelines and fall restraint.
• Personal flotation devices are utilised where swimming proficiency is inadequate. |
| H19.6 | Other hazard related activity. |